These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 19107598)

  • 1. Volume ordering for analysis and modeling of vascular systems.
    Marxen M; Sled JG; Henkelman RM
    Ann Biomed Eng; 2009 Mar; 37(3):542-51. PubMed ID: 19107598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural morphology of renal vasculature.
    Nordsletten DA; Blackett S; Bentley MD; Ritman EL; Smith NP
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H296-309. PubMed ID: 16399870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels.
    Burrowes KS; Hunter PJ; Tawhai MH
    J Appl Physiol (1985); 2005 Aug; 99(2):731-8. PubMed ID: 15802366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Branching tree model with fractal vascular resistance explains fractal perfusion heterogeneity.
    Marxen M; Henkelman RM
    Am J Physiol Heart Circ Physiol; 2003 May; 284(5):H1848-57. PubMed ID: 12531721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional morphometric analysis of the renal vasculature.
    Khan Z; Ngo JP; Le B; Evans RG; Pearson JT; Gardiner BS; Smith DW
    Am J Physiol Renal Physiol; 2018 May; 314(5):F715-F725. PubMed ID: 28931522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood.
    Lee CJ; Ngo JP; Kar S; Gardiner BS; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F237-F253. PubMed ID: 28381464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric characteristics of arterial network of rat pial microcirculation.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(1):69-77. PubMed ID: 17901708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diameter-defined Strahler system and connectivity matrix of the pulmonary arterial tree.
    Jiang ZL; Kassab GS; Fung YC
    J Appl Physiol (1985); 1994 Feb; 76(2):882-92. PubMed ID: 8175603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity.
    VanBavel E; Spaan JA
    Circ Res; 1992 Nov; 71(5):1200-12. PubMed ID: 1394880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data.
    Mittal N; Zhou Y; Ung S; Linares C; Molloi S; Kassab GS
    Ann Biomed Eng; 2005 Aug; 33(8):1015-26. PubMed ID: 16133910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology-based prediction of elastic properties of trabecular bone samples.
    Cosmi F
    Acta Bioeng Biomech; 2009; 11(1):3-9. PubMed ID: 19736904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic three-dimensional reconstruction and modeling of cardiovascular anatomy in children with congenital heart disease using biplane angiography.
    Lanning C; Chen SY; Hansgen A; Chang D; Chan KC; Shandas R
    Biomed Sci Instrum; 2004; 40():200-5. PubMed ID: 15133958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural quantification and bifurcation symmetry in arterial tree models generated by constrained constructive optimization.
    Schreiner W; Neumann F; Neumann M; End A; Müller MR
    J Theor Biol; 1996 May; 180(2):161-74. PubMed ID: 8763367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to blood flow simulation in vascular networks.
    Tamaddon H; Behnia M; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2016; 19(6):673-85. PubMed ID: 26195135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planar cell polarity genes frizzled4 and frizzled6 exert patterning influence on arterial vessel morphogenesis.
    Markovič R; Peltan J; Gosak M; Horvat D; Žalik B; Seguy B; Chauvel R; Malandain G; Couffinhal T; Duplàa C; Marhl M; Roux E
    PLoS One; 2017; 12(3):e0171033. PubMed ID: 28253274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure distribution in the pial arterial system of rats based on morphometric data and mathematical models.
    Hudetz AG; Conger KA; Halsey JH; Pal M; Dohan O; Kovach AG
    J Cereb Blood Flow Metab; 1987 Jun; 7(3):342-55. PubMed ID: 3584267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.
    Mastmeyer A; Engelke K; Fuchs C; Kalender WA
    Med Image Anal; 2006 Aug; 10(4):560-77. PubMed ID: 16828329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular active contour for vessel tree segmentation.
    Shang Y; Deklerck R; Nyssen E; Markova A; de Mey J; Yang X; Sun K
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1023-32. PubMed ID: 21138795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer system for definition of the quantitative geometry of musculature from CT images.
    Daniel M; Iglic A; Kralj-Iglic V; Konvicková S
    Comput Methods Biomech Biomed Engin; 2005 Feb; 8(1):25-9. PubMed ID: 16154867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of the vascular structure dependence of blood flow in the kidney.
    Deng W; Tsubota KI
    Med Eng Phys; 2022 Jun; 104():103809. PubMed ID: 35641074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.