BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19107699)

  • 21. Polymeric micelle as the pseudostationary phase in electrokinetic chromatography.
    Wang B; Ni X; Yu M; Cao Y
    J Chromatogr A; 2012 Jul; 1245():190-8. PubMed ID: 22633065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selectivity of single, mixed, and modified pseudostationary phases in electrokinetic chromatography.
    Fuguet E; Ràfols C; Bosch E; Abraham MH; Rosés M
    Electrophoresis; 2006 May; 27(10):1900-14. PubMed ID: 16607607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymers of sodium-N-undec-10-ene-1-oyl taurate and sodium-N-undec-10-ene-1-oyl aminoethyl-2-phosphonate as pseudostationary phases for electrokinetic chromatography.
    Tellman KT; Palmer CP
    Electrophoresis; 1999 Jan; 20(1):152-61. PubMed ID: 10065972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retention behavior and selectivity of a latex nanoparticle pseudostationary phase for electrokinetic chromatography.
    Palmer CP; Keeffer A; Hilder EF; Haddad PR
    Electrophoresis; 2011 Feb; 32(5):588-94. PubMed ID: 21308694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enantiomeric separations by use of polymeric surfactant electrokinetic chromatography.
    Yarabe HH; Billiot E; Warner IM
    J Chromatogr A; 2000 Apr; 875(1-2):179-206. PubMed ID: 10839144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marker compounds for the determination of retention factors in EKC.
    Wiedmer SK; Lokajová J; Riekkola ML
    J Sep Sci; 2010 Feb; 33(3):394-409. PubMed ID: 19998378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of polymers based on a silicone backbone as pseudostationary phases for electrokinetic chromatography.
    Chen T; Palmer CP
    Electrophoresis; 1999 Sep; 20(12):2412-9. PubMed ID: 10499333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monolithic organic polymeric columns for capillary liquid chromatography and electrochromatography.
    Stulík K; Pacáková V; Suchánková J; Coufal P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):79-87. PubMed ID: 16714153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the enantioselectivity of carbon nanoparticles-modified chiral separation systems using dextrin as chiral selector by capillary electrokinetic chromatography.
    Hua X; Du Y; Chen J; Xu G; Yu T; Zhang Q
    Electrophoresis; 2013 Jul; 34(13):1901-7. PubMed ID: 23592416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RAFT polymerized nanoparticles: influences of shell and core chemistries on performance for electrokinetic chromatography.
    Hyslop JS; Hall LM; Umansky AA; Palmer CP
    Electrophoresis; 2014 Mar; 35(5):728-35. PubMed ID: 24302072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part I: characterization and application as novel pseudostationary phases.
    Akbay C; Gill NL; Powe A; Warner IM
    Electrophoresis; 2005 Jan; 26(2):415-25. PubMed ID: 15657889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of linear solvation energy relationships to polymeric pseudostationary phases in micellar electrokinetic chromatography.
    Fujimoto C
    Electrophoresis; 2001 Apr; 22(7):1322-9. PubMed ID: 11379954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusion coefficient and capacity factor in capillary electrokinetic chromatography with replaceable charged polymeric pseudophase.
    Maichel B; Gas B; Kenndler E
    Electrophoresis; 2000 May; 21(8):1505-12. PubMed ID: 10832880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in chiral separation using capillary electromigration techniques.
    Gübitz G; Schmid MG
    Electrophoresis; 2007 Jan; 28(1-2):114-26. PubMed ID: 17136739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micellar selectivity triangle for classification of chemical selectivity in electrokinetic chromatography.
    Fu C; Khaledi MG
    J Chromatogr A; 2009 Mar; 1216(10):1891-900. PubMed ID: 19181322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the polydispersity of polymeric surfactants on the enantioselectivity of chiral compounds in micellar electrokinetic chromatography.
    Tarus J; Agbaria RA; Morris K; Mwongela S; Numan A; Simuli L; Fletcher KA; Warner IM
    Langmuir; 2004 Aug; 20(16):6887-95. PubMed ID: 15274600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance and selectivity of polymeric pseudostationary phases for the electrokinetic separation of amino acid derivatives and peptides.
    Schulte S; Singh AK; Rauk E; Palmer CP
    Anal Bioanal Chem; 2005 Jun; 382(3):777-82. PubMed ID: 15933853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part II: characterization of chemical selectivity using two linear solvation energy relationship models.
    Akbay C; Agbaria RA; Warner IM
    Electrophoresis; 2005 Jan; 26(2):426-45. PubMed ID: 15657890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micellar electrokinetic chromatography: A practical overview of current methodological and instrumental advances.
    Silva M
    Electrophoresis; 2011 Jan; 32(1):149-65. PubMed ID: 21171120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discontinuous electrokinetic chromatography of parabens using different substituted resonances as pseudostationary phases.
    Bazzanella A; Bächmann K; Milbradt R; Böhmer V; Vogt W
    Electrophoresis; 1999 Jan; 20(1):92-9. PubMed ID: 10065964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.