These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 1910845)
1. Effect of high-volume cardioplegia on small-amplitude electrical activity during cardioplegia arrest. Landymore RW; Marble AE; Eng P; MacAulay MA; Trillo A; Li QY Eur J Cardiothorac Surg; 1991; 5(8):395-9. PubMed ID: 1910845 [TBL] [Abstract][Full Text] [Related]
2. Oxygenated cardioplegia ameliorates the adverse effects of small amplitude electrical recording of activity on myocardial metabolic and functional recovery. Landymore RW; Marble AE; MacAulay MA; Li QY; Fris J Eur J Cardiothorac Surg; 1991; 5(1):37-40. PubMed ID: 2018647 [TBL] [Abstract][Full Text] [Related]
3. Effect of small-amplitude electrical activity on myocardial preservation in the cold potassium-arrested heart. Landymore RW; Marble AE; Trillo A; MacAulay M; Faulkner G; Cameron C J Thorac Cardiovasc Surg; 1986 May; 91(5):684-9. PubMed ID: 3702477 [TBL] [Abstract][Full Text] [Related]
4. Monitoring the voltage of the myocardium during cardioplegia arrest. Landymore RW; Marble AE Eur J Cardiothorac Surg; 1989; 3(3):203-7; discussion 207-8. PubMed ID: 2624782 [TBL] [Abstract][Full Text] [Related]
5. Effects of Hot shot on recovery after hypothermic ischemia in neonatal lamb heart. Nomura F; Forbess JM; Mayer EJ J Cardiovasc Surg (Torino); 2001 Feb; 42(1):1-7. PubMed ID: 11292898 [TBL] [Abstract][Full Text] [Related]
6. The effect of temperature and hematocrit level of oxygenated cardioplegic solutions on myocardial preservation. Rousou JA; Engelman RM; Breyer RH; Otani H; Lemeshow S; Das DK J Thorac Cardiovasc Surg; 1988 Apr; 95(4):625-30. PubMed ID: 3352296 [TBL] [Abstract][Full Text] [Related]
7. Protection of the hypertrophied pig myocardium. A comparison of crystalloid, blood, and Fluosol-DA cardioplegia during prolonged aortic clamping. Novick RJ; Stefaniszyn HJ; Michel RP; Burdon FD; Salerno TA J Thorac Cardiovasc Surg; 1985 Apr; 89(4):547-66. PubMed ID: 3157028 [TBL] [Abstract][Full Text] [Related]
8. Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia. Pearl JM; Laks H; Drinkwater DC; Meneshian A; Sun B; Gates RN; Chang P J Thorac Cardiovasc Surg; 1993 Feb; 105(2):201-6. PubMed ID: 8429645 [TBL] [Abstract][Full Text] [Related]
9. The efficacy of blood versus crystalloid coronary sinus cardioplegia during global myocardial ischemia. Goldstein JP; Salter DR; Murphy CE; Abd-Elfattah AS; Morris JJ; Wechsler AS Circulation; 1986 Nov; 74(5 Pt 2):III99-104. PubMed ID: 3769191 [TBL] [Abstract][Full Text] [Related]
10. Myocardial oxygenation during terminal warm blood cardioplegia. Kawasuji M; Tomita S; Yasuda T; Sakakibara N; Takemura H; Watanabe Y Ann Thorac Surg; 1998 May; 65(5):1260-4. PubMed ID: 9594848 [TBL] [Abstract][Full Text] [Related]
11. Continuous tepid blood cardioplegia can preserve coronary endothelium and ameliorate the occurrence of cardiomyocyte apoptosis. Yeh CH; Wang YC; Wu YC; Chu JJ; Lin PJ Chest; 2003 May; 123(5):1647-54. PubMed ID: 12740286 [TBL] [Abstract][Full Text] [Related]
12. Myocardial protection during prolonged aortic cross-clamping. Comparison of blood and crystalloid cardioplegia. Catinella FP; Cunningham JN; Spencer FC J Thorac Cardiovasc Surg; 1984 Sep; 88(3):411-23. PubMed ID: 6471891 [TBL] [Abstract][Full Text] [Related]
13. Metabolic monitoring during continuous warm- and cold-blood cardioplegia by means of myocardial tissue pH and PO2. Carrier M; Trudelle S; Khalil A; Pelletier LC Can J Surg; 1998 Apr; 41(2):142-8. PubMed ID: 9575998 [TBL] [Abstract][Full Text] [Related]
14. Ventricular function after normothermic versus hypothermic cardioplegia. Yau TM; Ikonomidis JS; Weisel RD; Mickle DA; Ivanov J; Mohabeer MK; Tumiati L; Carson S; Liu P J Thorac Cardiovasc Surg; 1993 May; 105(5):833-43; discussion 843-4. PubMed ID: 8487562 [TBL] [Abstract][Full Text] [Related]
15. Retrograde cardioplegia does not adequately perfuse the right ventricle. Allen BS; Winkelmann JW; Hanafy H; Hartz RS; Bolling KS; Ham J; Feinstein S J Thorac Cardiovasc Surg; 1995 Jun; 109(6):1116-24; discussion 1124-6. PubMed ID: 7776676 [TBL] [Abstract][Full Text] [Related]
16. Preservation of myocardial function and biochemistry after blood and oxygenated crystalloid cardioplegia during cardiac arrest. Coetzee A; Roussouw G; Fourie P; Lochner A Ann Thorac Surg; 1990 Aug; 50(2):230-7. PubMed ID: 2383108 [TBL] [Abstract][Full Text] [Related]
17. Myocardial energy metabolism and ultrastructure with polarizing and depolarizing cardioplegia in a porcine model. Aass T; Stangeland L; Chambers DJ; Hallström S; Rossmann C; Podesser BK; Urban M; Nesheim K; Haaverstad R; Matre K; Grong K Eur J Cardiothorac Surg; 2017 Jul; 52(1):180-188. PubMed ID: 28329148 [TBL] [Abstract][Full Text] [Related]
18. Effect of intermittent delivery of warm blood cardioplegia on myocardial recovery. Landymore RW; Marble AE; Fris J Ann Thorac Surg; 1994 May; 57(5):1267-72. PubMed ID: 8179397 [TBL] [Abstract][Full Text] [Related]
19. The effects of warm versus cold blood cardioplegia on endothelial function, myocardial function, and energetics. Ko W; Zelano J; Isom OW; Krieger KH Circulation; 1993 Nov; 88(5 Pt 2):II359-65. PubMed ID: 8222179 [TBL] [Abstract][Full Text] [Related]
20. Functional, metabolic and ultrastructure evidence for improved myocardial protection during severe ischaemic stress with MBS, a new crystalloid cardioplegic solution. Choong YS; Gavin JB J Cardiovasc Surg (Torino); 1996 Jun; 37(3):275-84. PubMed ID: 8698764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]