These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 19109090)
1. On objective function, regularizer, and prediction error of a learning algorithm for dealing with multiplicative weight noise. Sum JP; Leung CS; Ho KI IEEE Trans Neural Netw; 2009 Jan; 20(1):124-38. PubMed ID: 19109090 [TBL] [Abstract][Full Text] [Related]
2. Convergence and objective functions of some fault/noise-injection-based online learning algorithms for RBF networks. Ho KI; Leung CS; Sum J IEEE Trans Neural Netw; 2010 Jun; 21(6):938-47. PubMed ID: 20388593 [TBL] [Abstract][Full Text] [Related]
3. Objective functions of online weight noise injection training algorithms for MLPs. Ho K; Leung CS; Sum J IEEE Trans Neural Netw; 2011 Feb; 22(2):317-23. PubMed ID: 21189237 [TBL] [Abstract][Full Text] [Related]
4. A fault-tolerant regularizer for RBF networks. Leung CS; Sum JP IEEE Trans Neural Netw; 2008 Mar; 19(3):493-507. PubMed ID: 18334367 [TBL] [Abstract][Full Text] [Related]
5. On the selection of weight decay parameter for faulty networks. Leung CS; Wang HJ; Sum J IEEE Trans Neural Netw; 2010 Aug; 21(8):1232-44. PubMed ID: 20682468 [TBL] [Abstract][Full Text] [Related]
6. A Regularizer Approach for RBF Networks Under the Concurrent Weight Failure Situation. Leung CS; Wan WY; Feng R IEEE Trans Neural Netw Learn Syst; 2017 Jun; 28(6):1360-1372. PubMed ID: 28113823 [TBL] [Abstract][Full Text] [Related]
7. On-line node fault injection training algorithm for MLP networks: objective function and convergence analysis. Sum JP; Leung CS; Ho KI IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):211-22. PubMed ID: 24808501 [TBL] [Abstract][Full Text] [Related]
8. Higher-order-statistics-based radial basis function networks for signal enhancement. Lin BS; Lin BS; Chong FC; Lai F IEEE Trans Neural Netw; 2007 May; 18(3):823-32. PubMed ID: 17526347 [TBL] [Abstract][Full Text] [Related]
9. Short-term prediction of chaotic time series by using RBF network with regression weights. Rojas I; Gonzalez J; Cañas A; Diaz AF; Rojas FJ; Rodriguez M Int J Neural Syst; 2000 Oct; 10(5):353-64. PubMed ID: 11195935 [TBL] [Abstract][Full Text] [Related]
10. Constructive approximation to multivariate function by decay RBF neural network. Hou M; Han X IEEE Trans Neural Netw; 2010 Sep; 21(9):1517-23. PubMed ID: 20693108 [TBL] [Abstract][Full Text] [Related]
11. Adaptive computation algorithm for RBF neural network. Han HG; Qiao JF IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):342-7. PubMed ID: 24808512 [TBL] [Abstract][Full Text] [Related]
12. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks. Yi Q; Zhan-ming L; Er-chao L ISA Trans; 2012 Nov; 51(6):786-91. PubMed ID: 22902083 [TBL] [Abstract][Full Text] [Related]
13. Artificial neural network learning of nonstationary behavior in time series. Széliga MI; Verdes PF; Granitto PM; Ceccatto HA Int J Neural Syst; 2003 Apr; 13(2):103-9. PubMed ID: 12923923 [TBL] [Abstract][Full Text] [Related]
14. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Vuković N; Miljković Z Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384 [TBL] [Abstract][Full Text] [Related]
15. A hierarchical RBF online learning algorithm for real-time 3-D scanner. Ferrari S; Bellocchio F; Piuri V; Borghese NA IEEE Trans Neural Netw; 2010 Feb; 21(2):275-85. PubMed ID: 20007028 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity analysis applied to the construction of radial basis function networks. Shi D; Yeung DS; Gao J Neural Netw; 2005 Sep; 18(7):951-7. PubMed ID: 15939573 [TBL] [Abstract][Full Text] [Related]
17. Data classification with radial basis function networks based on a novel kernel density estimation algorithm. Oyang YJ; Hwang SC; Ou YY; Chen CY; Chen ZW IEEE Trans Neural Netw; 2005 Jan; 16(1):225-36. PubMed ID: 15732402 [TBL] [Abstract][Full Text] [Related]
18. Generalized RLS approach to the training of neural networks. Xu Y; Wong KW; Leung CS IEEE Trans Neural Netw; 2006 Jan; 17(1):19-34. PubMed ID: 16526473 [TBL] [Abstract][Full Text] [Related]