These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Ultrasonic diffraction tomography by pulse-plane wave: experimental result by frequency synthesis method. Tangtisanon G; Jaruwongrunsee K; Withayachumnankul W; Hamamoto K; Pintavirooj C; Sangworasil M Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1822-5. PubMed ID: 17282572 [TBL] [Abstract][Full Text] [Related]
4. Computation of scattering of a plane wave from multiple prolate spheroids using the collocation multipole method. Lee WM; Chen JT J Acoust Soc Am; 2016 Oct; 140(4):2235. PubMed ID: 27794351 [TBL] [Abstract][Full Text] [Related]
5. Efficient frequency-domain finite element modeling of two-dimensional elastodynamic scattering. Wilcox PD; Velichko A J Acoust Soc Am; 2010 Jan; 127(1):155-65. PubMed ID: 20058959 [TBL] [Abstract][Full Text] [Related]
6. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder. Baynes AB; Godin OA J Acoust Soc Am; 2017 Dec; 142(6):3613. PubMed ID: 29289067 [TBL] [Abstract][Full Text] [Related]
7. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves. Mitri FG Ultrasonics; 2016 Mar; 66():27-33. PubMed ID: 26726146 [TBL] [Abstract][Full Text] [Related]
8. The scattering of sound by a long cylinder above an impedance boundary. Lui WK; Li KM J Acoust Soc Am; 2010 Feb; 127(2):664-74. PubMed ID: 20136188 [TBL] [Abstract][Full Text] [Related]
11. An efficient method for computing backscattering from Born objects of arbitrary shape. Pees EH J Acoust Soc Am; 2011 Jun; 129(6):3470-4. PubMed ID: 21682373 [TBL] [Abstract][Full Text] [Related]
12. No surprise in the first Born approximation for electron scattering. Lentzen M Ultramicroscopy; 2014 Jan; 136():201-10. PubMed ID: 24216157 [TBL] [Abstract][Full Text] [Related]
13. Linearization of the T-matrix solution for quasi-homogeneous scatterers. Valagiannopoulos CA; Tsitsas NL J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):870-81. PubMed ID: 19340261 [TBL] [Abstract][Full Text] [Related]
14. Diffraction tomography using arbitrary transmitter and receiver surfaces. Devaney AJ; Beylkin G Ultrason Imaging; 1984 Apr; 6(2):181-93. PubMed ID: 6539980 [TBL] [Abstract][Full Text] [Related]
16. Inverse scattering and diffraction tomography in cylindrical background media. Cheng JY; Devaney AJ J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1038-47. PubMed ID: 16642180 [TBL] [Abstract][Full Text] [Related]
17. Scattering of an electromagnetic plane wave by a sphere embedded in a cylinder. Mangini F; Tedeschi N J Opt Soc Am A Opt Image Sci Vis; 2017 May; 34(5):760-769. PubMed ID: 28463320 [TBL] [Abstract][Full Text] [Related]
18. Inversion of synthetic and experimental acoustical scattering data for the comparison of two reconstruction methods employing the Born approximation. Guillermin R; Lasaygues P; Sessarego JP; Wirgin A Ultrasonics; 2001 Mar; 39(2):121-31. PubMed ID: 11270630 [TBL] [Abstract][Full Text] [Related]
19. Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions. Moreira WL; Neves AA; Garbos MK; Euser TG; Cesar CL Opt Express; 2016 Feb; 24(3):2370-82. PubMed ID: 26906812 [TBL] [Abstract][Full Text] [Related]
20. Electromagnetic scattering by a buried sphere in a lossy medium of an inhomogeneous plane wave at arbitrary incidence: spectral-domain method. Frezza F; Mangini F J Opt Soc Am A Opt Image Sci Vis; 2016 May; 33(5):947-53. PubMed ID: 27140892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]