BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19109687)

  • 1. Rapid screening and scale-up of transaminase catalysed reactions.
    Truppo MD; Rozzell JD; Moore JC; Turner NJ
    Org Biomol Chem; 2009 Jan; 7(2):395-8. PubMed ID: 19109687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-scale process development of transaminase catalysed reactions.
    Truppo MD; Turner NJ
    Org Biomol Chem; 2010 Mar; 8(6):1280-3. PubMed ID: 20204194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric synthesis of chiral amines with omega-transaminase.
    Shin JS; Kim BG
    Biotechnol Bioeng; 1999 Oct; 65(2):206-11. PubMed ID: 10458742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductometric method for the rapid characterization of the substrate specificity of amine-transaminases.
    Schätzle S; Höhne M; Robins K; Bornscheuer UT
    Anal Chem; 2010 Mar; 82(5):2082-6. PubMed ID: 20148590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic modeling of omega-transamination for enzymatic kinetic resolution of alpha-methylbenzylamine.
    Shin JS; Kim BG
    Biotechnol Bioeng; 1998 Dec; 60(5):534-40. PubMed ID: 10099461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and sensitive kinetic assay for characterization of omega-transaminases.
    Schätzle S; Höhne M; Redestad E; Robins K; Bornscheuer UT
    Anal Chem; 2009 Oct; 81(19):8244-8. PubMed ID: 19739593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions.
    Cho BK; Cho HJ; Park SH; Yun H; Kim BG
    Biotechnol Bioeng; 2003 Mar; 81(7):783-9. PubMed ID: 12557311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Necessary and sufficient conditions for the asymmetric synthesis of chiral amines using ω-aminotransferases.
    Seo JH; Kyung D; Joo K; Lee J; Kim BG
    Biotechnol Bioeng; 2011 Feb; 108(2):253-63. PubMed ID: 20824676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omega-transaminases as efficient biocatalysts to obtain novel chiral selenium-amine ligands for Pd-catalysis.
    Andrade LH; Silva AV; Milani P; Koszelewski D; Kroutil W
    Org Biomol Chem; 2010 May; 8(9):2043-51. PubMed ID: 20401380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols.
    Matosevic S; Lye GJ; Baganz F
    J Biotechnol; 2011 Sep; 155(3):320-9. PubMed ID: 21807042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active site model of (R)-selective ω-transaminase and its application to the production of D-amino acids.
    Park ES; Dong JY; Shin JS
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):651-60. PubMed ID: 23576035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient kinetic resolution of racemic amines using a transaminase in combination with an amino acid oxidase.
    Truppo MD; Turner NJ; Rozzell JD
    Chem Commun (Camb); 2009 Apr; (16):2127-9. PubMed ID: 19360168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and multi-step transketolase-ω-transaminase bioconversions in an immobilized enzyme microreactor (IEMR) with packed tube.
    Halim AA; Szita N; Baganz F
    J Biotechnol; 2013 Dec; 168(4):567-75. PubMed ID: 24055435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoelectronic effects in the reaction of aromatic substrates catalysed by Halomonas elongata transaminase and its mutants.
    Contente ML; Planchestainer M; Molinari F; Paradisi F
    Org Biomol Chem; 2016 Oct; 14(39):9306-9311. PubMed ID: 27722400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of whole-cell transamination with Saccharomyces cerevisiae using metabolic engineering and cell pre-adaptation.
    Weber N; Gorwa-Grauslund M; Carlquist M
    Microb Cell Fact; 2017 Jan; 16(1):3. PubMed ID: 28049528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a lipase as a high-throughput screening method for measuring the enantiomeric excess of allylic acetates.
    Onaran MB; Seto CT
    J Org Chem; 2003 Oct; 68(21):8136-41. PubMed ID: 14535795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly enantiomeric reduction of acetophenone and its derivatives by locally isolated Rhodotorula glutinis.
    Zilbeyaz K; Kurbanoglu EB
    Chirality; 2010 Oct; 22(9):849-54. PubMed ID: 20803750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deracemization of mexiletine biocatalyzed by omega-transaminases.
    Koszelewski D; Pressnitz D; Clay D; Kroutil W
    Org Lett; 2009 Nov; 11(21):4810-2. PubMed ID: 19785441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an integrated chromatographic system for ω-transaminase-IMER characterization useful for flow-chemistry applications.
    Corti M; Rinaldi F; Monti D; Ferrandi EE; Marrubini G; Temporini C; Tripodo G; Kupfer T; Conti P; Terreni M; Massolini G; Calleri E
    J Pharm Biomed Anal; 2019 May; 169():260-268. PubMed ID: 30884324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic resolution of (R,S)-sec-butylamine using omega-transaminase from Vibrio fluvialis JS17 under reduced pressure.
    Yun H; Cho BK; Kim BG
    Biotechnol Bioeng; 2004 Sep; 87(6):772-8. PubMed ID: 15329935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.