These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19109719)

  • 1. Analysis of gene expression in Xenopus embryos.
    Lavery DL; Hoppler S
    Methods Mol Biol; 2008; 469():335-61. PubMed ID: 19109719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of Gene Expression Patterns by In Situ Hybridization on Early Stages of Development of Xenopus laevis.
    El-Hodiri HM; Kelly LE
    Methods Mol Biol; 2018; 1797():325-335. PubMed ID: 29896701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental Expression of Ectonucleotidase and Purinergic Receptors Detection by Whole-Mount In Situ Hybridization in Xenopus Embryos.
    Blanchard C; Massé K
    Methods Mol Biol; 2020; 2041():87-106. PubMed ID: 31646482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mouse whole mount RNA in situ hybridization: an effective technique for analyzing gene expression].
    Xiao CY; Levanon D; Zhang SZ; Groner Y
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2004 Feb; 21(1):47-51. PubMed ID: 14767909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-Mount In Situ Hybridization of
    Saint-Jeannet JP
    Cold Spring Harb Protoc; 2017 Dec; 2017(12):pdb.prot097287. PubMed ID: 29084864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Mount RNA In Situ Hybridization and Immunofluorescence of
    Willsey HR
    Cold Spring Harb Protoc; 2021 Oct; 2021(10):pdb.prot105635. PubMed ID: 33827967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos.
    Lang L; Miskovic D; Fernando P; Heikkila JJ
    Dev Genet; 1999; 25(4):365-74. PubMed ID: 10570468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new triple staining method for double in situ hybridization in combination with cell lineage tracing in whole-mount Xenopus embryos.
    Koga M; Kudoh T; Hamada Y; Watanabe M; Kageura H
    Dev Growth Differ; 2007 Oct; 49(8):635-45. PubMed ID: 17711476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-mount in situ hybridization (WISH) optimized for gene expression analysis in mouse embryos and embryoid bodies.
    Dakou E; Vanbekbergen N; Corradi S; Kemp CR; Willems E; Leyns L
    Methods Mol Biol; 2014; 1211():27-40. PubMed ID: 25218374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Hybridization and Immunostaining of Xenopus Brain.
    Liu KL; Wang XM; Li ZL; Liu Y; He RQ
    Methods Mol Biol; 2020; 2047():363-375. PubMed ID: 31552665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-Mount In Situ Hybridization of
    Bauermeister D; Pieler T
    Cold Spring Harb Protoc; 2018 Mar; 2018(3):. PubMed ID: 29496817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-mount in situ hybridization and detection of RNAs in vertebrate embryos and isolated organs.
    Pizard A; Haramis A; Carrasco AE; Franco P; López S; Paganelli A
    Curr Protoc Mol Biol; 2004 May; Chapter 14():Unit 14.9. PubMed ID: 18265339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimized procedure for whole-mount in situ hybridization on mouse embryos and embryoid bodies.
    Piette D; Hendrickx M; Willems E; Kemp CR; Leyns L
    Nat Protoc; 2008; 3(7):1194-201. PubMed ID: 18600225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New methods for computational decomposition of whole-mount in situ images enable effective curation of a large, highly redundant collection of Xenopus images.
    Patrushev I; James-Zorn C; Ciau-Uitz A; Patient R; Gilchrist MJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006077. PubMed ID: 30157169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of Xenopus laevis drg2, a member of the developmentally regulated GTP-binding protein subfamily.
    Ishikawa K; Azuma S; Ikawa S; Morishita Y; Gohda J; Akiyama T; Semba K; Inoue Ji
    Gene; 2003 Dec; 322():105-12. PubMed ID: 14644502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of hsp90 alpha and hsp90 beta during Xenopus laevis embryonic development.
    Taherian A; Ovsenek N; Krone PH
    Iran Biomed J; 2010 Oct; 14(4):127-35. PubMed ID: 21283254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. B-50/growth-associated protein-43, a marker of neural development in Xenopus laevis.
    Schrama LH; Lepperdinger G; Moritz A; van den Engel NK; Marquart A; Oestreicher AB; Eggen BJ; Hage WJ; Richter K; Destrée OH
    Neuroscience; 1997 Jan; 76(2):635-52. PubMed ID: 9015344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A protocol for whole-mount immuno-coupled hybridization chain reaction (WICHCR) in zebrafish embryos and larvae.
    Ibarra-García-Padilla R; Howard AGA; Singleton EW; Uribe RA
    STAR Protoc; 2021 Sep; 2(3):100709. PubMed ID: 34401776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor-beta5 expression during early development of Xenopus laevis.
    Kondaiah P; Taira M; Vempati UD; Dawid IB
    Mech Dev; 2000 Jul; 95(1-2):207-9. PubMed ID: 10906463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ hybridization to sections of Xenopus embryos.
    Bertwistle D
    Methods Mol Biol; 1999; 127():69-76. PubMed ID: 10503225
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.