These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19109719)

  • 21. In situ hybridization and immunostaining of Xenopus brain.
    Liu KL; Wang XM; Li ZL; He RQ; Liu Y
    Methods Mol Biol; 2014; 1082():129-41. PubMed ID: 24048931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expressional characterization of mRNA (guanine-7) methyltransferase (rnmt) during early development of Xenopus laevis.
    Lokapally A; Metikala S; Hollemann T
    Int J Dev Biol; 2016; 60(1-3):65-9. PubMed ID: 27002806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos.
    Weiszmann R; Hammonds AS; Celniker SE
    Nat Protoc; 2009; 4(5):605-18. PubMed ID: 19360017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression patterns of Src-family tyrosine kinases during Xenopus laevis development.
    Ferjentsik Z; Sindelka R; Jonak J
    Int J Dev Biol; 2009; 53(1):163-8. PubMed ID: 19123139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of hypergravity environments on amphibian development, gene expression and apoptosis.
    Kawakami S; Kashiwagi K; Furuno N; Yamashita M; Kashiwagi A
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Sep; 145(1):65-72. PubMed ID: 16807024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pancreatic protein disulfide isomerase (XPDIp) is an early marker for the exocrine lineage of the developing pancreas in Xenopus laevis embryos.
    Afelik S; Chen Y; Pieler T
    Gene Expr Patterns; 2004 Jan; 4(1):71-6. PubMed ID: 14678831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determining Temporal and Spatial Expression of Calpains in Amphibians.
    Charalambous A; Antoniades I; Christodoulou N; Zanardelli S; Skourides PA
    Methods Mol Biol; 2019; 1915():67-79. PubMed ID: 30617796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wholemount in situ hybridization of Xenopus and zebrafish embryos.
    Broadbent J; Read EM
    Methods Mol Biol; 1999; 127():57-67. PubMed ID: 10503224
    [No Abstract]   [Full Text] [Related]  

  • 29. High-throughput whole mount in situ hybridization of zebrafish embryos for analysis of tissue-specific gene expression changes after environmental perturbation.
    Coverdale LE; Burton LE; Martin CC
    Methods Mol Biol; 2008; 410():3-14. PubMed ID: 18642591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptomics and Proteomics Methods for
    Gilchrist MJ; Veenstra GJC; Cho KWY
    Cold Spring Harb Protoc; 2020 Feb; 2020(2):098350. PubMed ID: 31772075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole Mount In Situ Hybridization and Immunohistochemistry for Zebrafish Larvae.
    Cunningham RL; Monk KR
    Methods Mol Biol; 2018; 1739():371-384. PubMed ID: 29546721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel gene, BENI is required for the convergent extension during Xenopus laevis gastrulation.
    Homma M; Inui M; Fukui A; Michiue T; Okabayashi K; Asashima M
    Dev Biol; 2007 Mar; 303(1):270-80. PubMed ID: 17174295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis.
    de Roos K; Sonneveld E; Compaan B; ten Berge D; Durston AJ; van der Saag PT
    Mech Dev; 1999 Apr; 82(1-2):205-11. PubMed ID: 10354487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos.
    Trivedi V; Choi HMT; Fraser SE; Pierce NA
    Development; 2018 Jan; 145(1):. PubMed ID: 29311262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mustn1 is essential for craniofacial chondrogenesis during Xenopus development.
    Gersch RP; Kirmizitas A; Sobkow L; Sorrentino G; Thomsen GH; Hadjiargyrou M
    Gene Expr Patterns; 2012; 12(3-4):145-53. PubMed ID: 22281807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonradioactive in situ hybridization to xenopus tissue sections.
    Butler K; Zorn AM; Gurdon JB
    Methods; 2001 Apr; 23(4):303-12. PubMed ID: 11316431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new method to remove hybridization bias for interspecies comparison of global gene expression profiles uncovers an association between mRNA sequence divergence and differential gene expression in Xenopus.
    Sartor MA; Zorn AM; Schwanekamp JA; Halbleib D; Karyala S; Howell ML; Dean GE; Medvedovic M; Tomlinson CR
    Nucleic Acids Res; 2006; 34(1):185-200. PubMed ID: 16397297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding early organogenesis using a simplified in situ hybridization protocol in Xenopus.
    Deimling SJ; Halabi RR; Grover SA; Wang JH; Drysdale TA
    J Vis Exp; 2015 Jan; (95):e51526. PubMed ID: 25651461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inositol-requiring enzyme 1α is required for gut development in Xenopus lavies embryos.
    Guo J; Li XX; Feng JJ; Yin CY; Wang XJ; Wang N; Yuan L
    World J Gastroenterol; 2013 Jan; 19(2):227-34. PubMed ID: 23345945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fork head related multigene family is transcribed in Xenopus laevis embryos.
    Lef J; Dege P; Scheucher M; Forsbach-Birk V; Clement JH; Knöchel W
    Int J Dev Biol; 1996 Feb; 40(1):245-53. PubMed ID: 8735935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.