BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 19109724)

  • 21. Peroxisome biogenesis occurs in late dorsal-anterior structures in the development of Xenopus laevis.
    Cooper CA; Walsh LA; Damjanovski S
    Dev Dyn; 2007 Dec; 236(12):3554-61. PubMed ID: 17973332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measuring CamKII activity in Xenopus embryos as a read-out for non-canonical Wnt signaling.
    Kühl M; Pandur P
    Methods Mol Biol; 2008; 468():173-86. PubMed ID: 19099254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. XSu(H)2 is an essential factor for gene expression and morphogenesis of the Xenopus gastrula embryo.
    Ito M; Katada T; Miyatani S; Kinoshita T
    Int J Dev Biol; 2007; 51(1):27-36. PubMed ID: 17183462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Canonical Wnt signaling controls proliferation of retinal stem/progenitor cells in postembryonic Xenopus eyes.
    Denayer T; Locker M; Borday C; Deroo T; Janssens S; Hecht A; van Roy F; Perron M; Vleminckx K
    Stem Cells; 2008 Aug; 26(8):2063-74. PubMed ID: 18556512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of the novel gene Ened during mouse and Xenopus embryonic development.
    Meszaros R; Strate I; Pera EM; Durbeej M
    Int J Dev Biol; 2008; 52(8):1119-22. PubMed ID: 18956345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos.
    Lang L; Miskovic D; Fernando P; Heikkila JJ
    Dev Genet; 1999; 25(4):365-74. PubMed ID: 10570468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.
    Manwell LA; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-full-length REV3L appears to be a scarce maternal factor in Xenopus laevis eggs that changes qualitatively in early embryonic development.
    Ogawara D; Muroya T; Yamauchi K; Iwamoto TA; Yagi Y; Yamashita Y; Waga S; Akiyama M; Maki H
    DNA Repair (Amst); 2010 Jan; 9(1):90-5. PubMed ID: 19896909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of transgenic frogs.
    Loeber J; Pan FC; Pieler T
    Methods Mol Biol; 2009; 561():65-72. PubMed ID: 19504064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishment of mesodermal gene expression patterns in early Xenopus embryos: the role of repression.
    Kurth T; Meissner S; Schäckel S; Steinbeisser H
    Dev Dyn; 2005 Jun; 233(2):418-29. PubMed ID: 15779047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene silencing in Xenopus laevis by DNA vector-based RNA interference and transgenesis.
    Li M; Rohrer B
    Cell Res; 2006 Jan; 16(1):99-105. PubMed ID: 16467881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ET3/Ednrb2 signaling is critically involved in regulating melanophore migration in Xenopus.
    Kawasaki-Nishihara A; Nishihara D; Nakamura H; Yamamoto H
    Dev Dyn; 2011 Jun; 240(6):1454-66. PubMed ID: 21538684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of endogenous and microinjected hsp 30 genes in early Xenopus laevis embryos.
    Ali A; Krone PH; Heikkila JJ
    Dev Genet; 1993; 14(1):42-50. PubMed ID: 8482010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gain- and loss-of-function approaches in the chick embryo.
    Sauka-Spengler T; Barembaum M
    Methods Cell Biol; 2008; 87():237-56. PubMed ID: 18485300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An artificial promoter construct for heat-inducible misexpression during fish embryogenesis.
    Bajoghli B; Aghaallaei N; Heimbucher T; Czerny T
    Dev Biol; 2004 Jul; 271(2):416-30. PubMed ID: 15223344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis.
    Bardine N; Donow C; Korte B; Durston AJ; Knöchel W; Wacker SA
    Dev Dyn; 2009 Mar; 238(3):755-65. PubMed ID: 19235717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA of AmVegT, the axolotl orthologue of the Xenopus meso-endodermal determinant, is not localized in the oocyte.
    Nath K; Elinson RP
    Gene Expr Patterns; 2007 Jan; 7(1-2):197-201. PubMed ID: 16920404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of RhoB in the developing Xenopus laevis embryo.
    Vignal E; de Santa Barbara P; Guémar L; Donnay JM; Fort P; Faure S
    Gene Expr Patterns; 2007 Jan; 7(3):282-8. PubMed ID: 17049930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation.
    Cao Y; Siegel D; Knöchel W
    Mech Dev; 2006 Aug; 123(8):614-25. PubMed ID: 16860542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of FoxC1 in early Xenopus development.
    Cha JY; Birsoy B; Kofron M; Mahoney E; Lang S; Wylie C; Heasman J
    Dev Dyn; 2007 Oct; 236(10):2731-41. PubMed ID: 17705306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.