BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19110289)

  • 1. Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz.
    Umchid S; Gopinath R; Srinivasan K; Lewin PA; Daryoush AS; Bansal L; El-Sherif M
    Ultrasonics; 2009 Mar; 49(3):306-11. PubMed ID: 19110289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophone spatial averaging corrections from 1 to 40 MHz.
    Radulescu EG; Lewin PA; Goldstein A; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1575-80. PubMed ID: 11800120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
    Wilkens V; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1784-91. PubMed ID: 17941384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration of ultrasonic hydrophone probes up to 100 MHz using time gating frequency analysis and finite amplitude waves.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):247-54. PubMed ID: 12782255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of sensitivity versus frequency characteristics of miniature ultrasonic hydrophones below 1 MHz using planar scanning technique.
    Devaraju V; Lewin PA; Bleeker H
    J Ultrasound Med; 2002 Mar; 21(3):261-8. PubMed ID: 11883536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage sensitivity response of ultrasonic hydrophones in the frequency range 0.25-2.5 MHz.
    Lewin PA; Bautista R; Devaraju V
    Ultrasound Med Biol; 1999 Sep; 25(7):1131-7. PubMed ID: 10574344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin film metal coated fiber optic hydrophone probe.
    Gopinath Minasamudram R; Arora P; Gandhi G; Daryoush AS; El-Sherif MA; Lewin PA
    Appl Opt; 2009 Nov; 48(31):G77-82. PubMed ID: 19881652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1-60 MHz measurements in focused acoustic fields using spatial averaging corrections.
    Radulescu EG; Lewin PA; Nowicki A
    Ultrasonics; 2002 May; 40(1-8):497-501. PubMed ID: 12159990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.
    Haller J; Wilkens V; Jenderka KV; Koch C
    J Acoust Soc Am; 2011 Jun; 129(6):3676-81. PubMed ID: 21682392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of ultrasonic hydrophone probes below 1 MHz.
    Lewin PA; Lypacewicz G; Bautista R; Devaraju V
    Ultrasonics; 2000 Mar; 38(1-8):135-9. PubMed ID: 10829645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
    Cooling MP; Humphrey VF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):84-93. PubMed ID: 18334316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration of a focusing transducer and miniature hydrophone as well as acoustic power measurement based on free-field reciprocity in a spherically focused wave field.
    Shou W; Duan S; He P; Xia R; Qian D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):564-70. PubMed ID: 16555764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer.
    Yang P; Xing G; He L
    Ultrasonics; 2014 Jan; 54(1):402-7. PubMed ID: 23932658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal.
    Acquafresca A; Biagi E; Masotti L; Menichelli D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1325-35. PubMed ID: 14609072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.
    Bleeker HJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1354-62. PubMed ID: 18238681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of ultrasonic transducers using a fiberoptic sensor.
    Wu YQ; Shankar PM; Lewin PA
    Ultrasound Med Biol; 1994; 20(7):645-53. PubMed ID: 7810025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiple-frequency hydrophone calibration technique.
    Smith RA; Bacon DR
    J Acoust Soc Am; 1990 May; 87(5):2231-43. PubMed ID: 2189922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.