BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19110437)

  • 1. Targetry of SrCO(3) on a copper substrate by sedimentation method for the cyclotron production no-carrier-added (86)Y.
    Sadeghi M; Zali A; Aboudzadeh M; Sarabadani P; Aslani G; Majdabadi A
    Appl Radiat Isot; 2009 Nov; 67(11):2029-32. PubMed ID: 19110437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (86)Y production via (86)Sr(p,n) for PET imaging at a cyclotron.
    Sadeghi M; Aboudzadeh M; Zali A; Zeinali B
    Appl Radiat Isot; 2009; 67(7-8):1392-6. PubMed ID: 19285420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiochemical studies relevant to 86Y production via 86Sr(p,n)86Y for PET imaging.
    Sadeghi M; Aboudzadeh M; Zali A; Mirzaii M; Bolourinovin F
    Appl Radiat Isot; 2009 Jan; 67(1):7-10. PubMed ID: 18930657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and separation of non-carrier-added 86Y from enriched 86Sr targets.
    Avila-Rodriguez MA; Nye JA; Nickles RJ
    Appl Radiat Isot; 2008 Jan; 66(1):9-13. PubMed ID: 17869530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syntheses and characterization of Sr(OH)2 and SrCO3 nanostructures by ultrasonic method.
    Alavi MA; Morsali A
    Ultrason Sonochem; 2010 Jan; 17(1):132-8. PubMed ID: 19501537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of high specific activity (86)Y using a small biomedical cyclotron.
    Yoo J; Tang L; Perkins TA; Rowland DJ; Laforest R; Lewis JS; Welch MJ
    Nucl Med Biol; 2005 Nov; 32(8):891-7. PubMed ID: 16253815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The production of [124I]iodine and [86Y]yttrium.
    Schmitz J
    Eur J Nucl Med Mol Imaging; 2011 May; 38 Suppl 1():S4-9. PubMed ID: 21484376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y.
    Pal S; Chattopadhyay S; Das MK; Sudersanan M
    Appl Radiat Isot; 2006 Dec; 64(12):1521-7. PubMed ID: 16822676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Y-86 and other radiometals for research purposes using a solution target system.
    Oehlke E; Hoehr C; Hou X; Hanemaayer V; Zeisler S; Adam MJ; Ruth TJ; Celler A; Buckley K; Benard F; Schaffer P
    Nucl Med Biol; 2015 Nov; 42(11):842-9. PubMed ID: 26264926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of copper radionuclides and production of 61Cu by proton irradiation of (nat)Zn at a medical cyclotron.
    Rowshanfarzad P; Sabet M; Jalilian AR; Kamalidehghan M
    Appl Radiat Isot; 2006 Dec; 64(12):1563-73. PubMed ID: 16377202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target development for diversified irradiations at a medical cyclotron.
    Spellerberg S; Scholten B; Spahn I; Bolten W; Holzgreve M; Coenen HH; Qaim SM
    Appl Radiat Isot; 2015 Oct; 104():106-12. PubMed ID: 26142809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation functions of (alpha,xn) reactions on (nat)Rb and (nat)Sr from threshold up to 26 MeV: possibility of production of (87)Y, (88)Y and (89)Zr.
    Kandil SA; Spahn I; Scholten B; Saleh ZA; Saad SM; Coenen HH; Qaim SM
    Appl Radiat Isot; 2007 May; 65(5):561-8. PubMed ID: 17344051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production study of high specific activity NCA Re-186g by proton and deuteron cyclotron irradiation.
    Bonardi ML; Groppi F; Manenti S; Persico E; Gini L
    Appl Radiat Isot; 2010 Sep; 68(9):1595-601. PubMed ID: 20399107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of nitrogen-13-labeled ammonia by using 11MeV medical cyclotron: our experience.
    Kumar R; Singh H; Jacob M; Anand SP; Bandopadhyaya GP
    Hell J Nucl Med; 2009; 12(3):248-50. PubMed ID: 19936337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-field QCPMG NMR of strontium nuclei in natural minerals.
    Bowers GM; Lipton AS; Mueller KT
    Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):95-103. PubMed ID: 16169195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-automated 86Y purification using a three-column system.
    Park LS; Szajek LP; Wong KJ; Plascjak PS; Garmestani K; Googins S; Eckelman WC; Carrasquillo JA; Paik CH
    Nucl Med Biol; 2004 Feb; 31(2):297-301. PubMed ID: 15013497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear model analysis of excitation functions of proton induced reactions on ⁸⁶Sr, ⁸⁸Sr and natZr: Evaluation of production routes of ⁸⁶Y.
    Zaneb H; Hussain M; Amjed N; Qaim SM
    Appl Radiat Isot; 2015 Oct; 104():232-41. PubMed ID: 26210800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of 89Zr via the 89Y(p,n)89Zr reaction in aqueous solution: effect of solution composition on in-target chemistry.
    Pandey MK; Engelbrecht HP; Byrne JP; Packard AB; DeGrado TR
    Nucl Med Biol; 2014 Apr; 41(4):309-16. PubMed ID: 24607433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei.
    Avila-Rodriguez MA; Nye JA; Nickles RJ
    Appl Radiat Isot; 2007 Oct; 65(10):1115-20. PubMed ID: 17669663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated processing of solid target
    Dinh T; Panopoulos H; Poniger S; Scott AM
    Appl Radiat Isot; 2022 Mar; 181():110052. PubMed ID: 35032841
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.