These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 19110463)

  • 1. Automatic detection method of muscle fiber movement as revealed by ultrasound images.
    Miyoshi T; Kihara T; Koyama H; Yamamoto S; Komeda T
    Med Eng Phys; 2009 Jun; 31(5):558-64. PubMed ID: 19110463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic tracking of muscle fascicles in ultrasound images using localized Radon transform.
    Zhao H; Zhang LQ
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2094-101. PubMed ID: 21518657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated image analysis of skeletal muscle fiber cross-sectional area.
    Mula J; Lee JD; Liu F; Yang L; Peterson CA
    J Appl Physiol (1985); 2013 Jan; 114(1):148-55. PubMed ID: 23139362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging.
    Zhou Y; Li JZ; Zhou G; Zheng YP
    Biomed Eng Online; 2012 Sep; 11():63. PubMed ID: 22943184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of muscle fibre displacement during contraction by real-time ultrasonography in humans.
    Kuno S; Fukunaga T
    Eur J Appl Physiol Occup Physiol; 1995; 70(1):45-8. PubMed ID: 7729437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual sarcomere lengths in whole muscle fibers and optimal fiber length computation.
    Infantolino BW; Ellis MJ; Challis JH
    Anat Rec (Hoboken); 2010 Nov; 293(11):1913-9. PubMed ID: 20818614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a high-precision image-processing automatic measurement system for MRI visceral fat images acquired using a binomial RF-excitation pulse.
    Nakai R; Azuma T; Kishimoto T; Hirata T; Takizawa O; Hyon SH; Tsutsumi S
    Magn Reson Imaging; 2010 May; 28(4):520-6. PubMed ID: 20096526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of muscle fiber orientation in ultrasound images using revoting hough transform (RVHT).
    Zhou Y; Zheng YP
    Ultrasound Med Biol; 2008 Sep; 34(9):1474-81. PubMed ID: 18420336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automated segmentation and morphometrical analysis of muscle fiber images.
    Kim YJ; Brox T; Feiden W; Weickert J
    Cytometry A; 2007 Jan; 71(1):8-15. PubMed ID: 17211880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability and accuracy of ultrasound image analyses completed manually
    Wohlgemuth KJ; Blue MNM; Mota JA
    PeerJ; 2022; 10():e13609. PubMed ID: 35729910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated measurement of intima-media thickness of carotid arteries in ultrasonography by computer software.
    Seçil M; Altay C; Gülcü A; Ceçe H; Göktay AY; Dicle O
    Diagn Interv Radiol; 2005 Jun; 11(2):105-8. PubMed ID: 15957098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Registration of serial transverse sections of muscle fibers.
    Likar B; Pernus F
    Cytometry; 1999 Oct; 37(2):93-106. PubMed ID: 10486521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Muscle Fiber Orientation Tracking in Ultrasound Images Using a New Adaptive Fading Bayesian Kalman Smoother.
    Liu Z; Chan SC; Zhang S; Zhang Z; Chen X
    IEEE Trans Image Process; 2019 Aug; 28(8):3714-3727. PubMed ID: 30794172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool.
    Mayeuf-Louchart A; Hardy D; Thorel Q; Roux P; Gueniot L; Briand D; Mazeraud A; Bouglé A; Shorte SL; Staels B; Chrétien F; Duez H; Danckaert A
    Skelet Muscle; 2018 Aug; 8(1):25. PubMed ID: 30081940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images.
    Mazonakis M; Grinias E; Pagonidis K; Tziritas G; Damilakis J
    Phys Med Biol; 2010 Feb; 55(4):1127-40. PubMed ID: 20107252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational approach to detect and segment cytoplasm in muscle fiber images.
    Guo Y; Xu X; Wang Y; Yang Z; Wang Y; Xia S
    Microsc Res Tech; 2015 Jun; 78(6):508-18. PubMed ID: 25900156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided detection of fasciculations and other movements in muscle with ultrasound: Development and clinical application.
    Gijsbertse K; Bakker M; Sprengers A; Wijntjes J; Lassche S; Verdonschot N; de Korte CL; van Alfen N
    Clin Neurophysiol; 2018 Dec; 129(12):2567-2576. PubMed ID: 30414527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of an automated computational method for skeletal muscle fibre morphometry analysis.
    Garton F; Seto JT; North KN; Yang N
    Neuromuscul Disord; 2010 Aug; 20(8):540-7. PubMed ID: 20638845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Does ultrasonographic-morphologic staging of lymph nodes in head and neck cancer lend itself to automation?].
    Grötz KA; Krummenauer F; Al-Nawas B; Jaud K; Brahm R; Wagner W
    Ultraschall Med; 2000 Jun; 21(3):93-100. PubMed ID: 10929594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.
    Guo Y; Xu X; Wang Y; Wang Y; Xia S; Yang Z
    Microsc Res Tech; 2014 Aug; 77(8):547-59. PubMed ID: 24777764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.