BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 19110584)

  • 21. Regulation of tryptophan synthase gene expression in Chlamydia trachomatis.
    Wood H; Fehlner-Gardner C; Berry J; Fischer E; Graham B; Hackstadt T; Roshick C; McClarty G
    Mol Microbiol; 2003 Sep; 49(5):1347-59. PubMed ID: 12940992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro antichlamydial activity of garenoxacin against Chlamydia trachomatis.
    Futakuchi N; Nakatani M; Takahata M; Mitsuyama J
    J Infect Chemother; 2012 Aug; 18(4):428-35. PubMed ID: 22113367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors.
    Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ
    Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Co-infection Model System and the Use of Chimeric Proteins to Study
    Han Y; Derré I
    Front Cell Infect Microbiol; 2017; 7():79. PubMed ID: 28352612
    [No Abstract]   [Full Text] [Related]  

  • 25. [Effector proteins of Clamidia].
    Kariagina AS; Alekseevskiĭ AV; Spirin SA; Zigangirova NA; Gintsburg AL
    Mol Biol (Mosk); 2009; 43(6):963-83. PubMed ID: 20088373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlamydia trachomatis Type III Secretion Proteins Regulate Transcription.
    Hanson BR; Slepenkin A; Peterson EM; Tan M
    J Bacteriol; 2015 Oct; 197(20):3238-44. PubMed ID: 26216849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection.
    Misaghi S; Balsara ZR; Catic A; Spooner E; Ploegh HL; Starnbach MN
    Mol Microbiol; 2006 Jul; 61(1):142-50. PubMed ID: 16824101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a Proximity Labeling System to Map the
    Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP
    Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569
    [No Abstract]   [Full Text] [Related]  

  • 29. Multifunctional analysis of Chlamydia-specific genes in a yeast expression system.
    Sisko JL; Spaeth K; Kumar Y; Valdivia RH
    Mol Microbiol; 2006 Apr; 60(1):51-66. PubMed ID: 16556220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of a novel Chlamydia trachomatis reticulate body protein.
    Shaw AC; Larsen MR; Roepstorff P; Christiansen G; Birkelund S
    FEMS Microbiol Lett; 2002 Jul; 212(2):193-202. PubMed ID: 12113934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.
    Aeberhard L; Banhart S; Fischer M; Jehmlich N; Rose L; Koch S; Laue M; Renard BY; Schmidt F; Heuer D
    PLoS Pathog; 2015 Jun; 11(6):e1004883. PubMed ID: 26042774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA.
    Alzhanov D; Barnes J; Hruby DE; Rockey DD
    BMC Microbiol; 2004 Jul; 4():24. PubMed ID: 15230981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of the load and transcriptional dynamics of Chlamydia trachomatis plasmid according to strains' tissue tropism.
    Ferreira R; Borges V; Nunes A; Borrego MJ; Gomes JP
    Microbiol Res; 2013 Jul; 168(6):333-339. PubMed ID: 23590987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chlamydia trachomatis plasmid-encoded protein Pgp3 inhibits apoptosis via the PI3K-AKT-mediated MDM2-p53 axis.
    Zou Y; Lei W; Su S; Bu J; Zhu S; Huang Q; Li Z
    Mol Cell Biochem; 2019 Feb; 452(1-2):167-176. PubMed ID: 30132214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis.
    Muschiol S; Bailey L; Gylfe A; Sundin C; Hultenby K; Bergström S; Elofsson M; Wolf-Watz H; Normark S; Henriques-Normark B
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14566-71. PubMed ID: 16973741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis of the proteolytic and chaperone activity of Chlamydia trachomatis CT441.
    Kohlmann F; Shima K; Hilgenfeld R; Solbach W; Rupp J; Hansen G
    J Bacteriol; 2015 Jan; 197(1):211-8. PubMed ID: 25349155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion.
    da Cunha M; Pais SV; Bugalhão JN; Mota LJ
    PLoS One; 2017; 12(6):e0178856. PubMed ID: 28622339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for the hijacking of endosomal sorting nexin proteins by
    Paul B; Kim HS; Kerr MC; Huston WM; Teasdale RD; Collins BM
    Elife; 2017 Feb; 6():. PubMed ID: 28226239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localization of C. trachomatis Inc proteins in expression of their genes in HeLa cell culture.
    Shkarupeta MM; Kostrjukova ES; Lazarev VN; Levitskii SA; Basovskii YI; Govorun VM
    Bull Exp Biol Med; 2008 Aug; 146(2):237-42. PubMed ID: 19145327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.