These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 19111396)

  • 21. Monitoring metals near a hazardous waste incinerator. Temporal trend in soils and herbage.
    Ferré-Huguet N; Nadal M; Mari M; Schuhmacher M; Borrajo MA; Domingo JL
    Bull Environ Contam Toxicol; 2007 Aug; 79(2):130-4. PubMed ID: 17492387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-firing of paper sludge with high-calorific industrial wastes in a pilot-scale nozzle-grate incinerator.
    Lee GW; Lee SJ; Jurng J; Hwang J
    J Hazard Mater; 2003 Aug; 101(3):273-83. PubMed ID: 12935759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Air emissions from the incineration of hazardous waste.
    Oppelt ET
    Toxicol Ind Health; 1990 Oct; 6(5):23-51. PubMed ID: 1670279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fundamental characteristics of input waste of small MSW incinerators in Korea.
    Choi KI; Lee SH; Lee DH; Osako M
    Waste Manag; 2008 Nov; 28(11):2293-300. PubMed ID: 18082391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low SO2 emission from CFB co-firing MSW and bituminous.
    Lu QG; Li ZW; Na YJ; Ba SL; Sun YK; He J
    J Environ Sci (China); 2004; 16(5):821-4. PubMed ID: 15559820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-line detection of metal pollutant spikes in MSW incinerator flue gases prior to clean-up.
    Poole D; Sharifi V; Swithenbank J; Argent B; Ardelt D
    Waste Manag; 2007; 27(4):519-32. PubMed ID: 16723218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Garbage incineration plants -- planning, organisation and operation from health point of view].
    Thriene B
    Gesundheitswesen; 2004 Dec; 66(12):827-32. PubMed ID: 15609220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an inverse method to identify the kinetics of heavy metal release during waste incineration in fluidized bed.
    Abanades S; Flamant G; Gauthier D; Tomas S; Huang L
    J Hazard Mater; 2005 Sep; 124(1-3):19-26. PubMed ID: 15950377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.
    Wood S; Fletcher DF; Joseph SD; Dawson A; Harris AT
    Environ Sci Technol; 2009 Dec; 43(24):9329-34. PubMed ID: 20000525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance.
    Moustakas K; Xydis G; Malamis S; Haralambous KJ; Loizidou M
    J Hazard Mater; 2008 Mar; 151(2-3):473-80. PubMed ID: 17624665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Health effects from hazardous waste incineration facilities: five case studies.
    Pleus RC; Kelly KE
    Toxicol Ind Health; 1996; 12(2):277-87. PubMed ID: 8794540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-combustion of shredder residues and municipal solid waste in a Swedish municipal solid waste incinerator.
    Redin LA; Hjelt M; Marklund S
    Waste Manag Res; 2001 Dec; 19(6):518-25. PubMed ID: 12201681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Municipal solid waste incineration in China and the issue of acidification: A review.
    Ji L; Lu S; Yang J; Du C; Chen Z; Buekens A; Yan J
    Waste Manag Res; 2016 Apr; 34(4):280-97. PubMed ID: 26941208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The benefits of flue gas recirculation in waste incineration.
    Liuzzo G; Verdone N; Bravi M
    Waste Manag; 2007; 27(1):106-16. PubMed ID: 16516458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.
    Yanguo Zhang ; Qinghai Li ; Aihong Meng ; Changhe Chen
    Waste Manag Res; 2011 Mar; 29(3):294-308. PubMed ID: 20421246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emission of viable bacteria in the exhaust flue gases from a hospital incinerator.
    Blenkharn JI; Oakland D
    J Hosp Infect; 1989 Jul; 14(1):73-8. PubMed ID: 2570106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator.
    Jiang Y; Xi B; Li X; Zhang L; Wei Z
    J Hazard Mater; 2009 Jan; 161(2-3):871-7. PubMed ID: 18495335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emissions from a controlled fire in municipal solid waste bales.
    Nammari DR; Hogland W; Marques M; Nimmermark S; Moutavtchi V
    Waste Manag; 2004; 24(1):9-18. PubMed ID: 14672722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan.
    Kuo NW; Ma HW; Yang YM; Hsiao TY; Huang CM
    Waste Manag; 2007; 27(11):1673-9. PubMed ID: 17716888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.