BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19111488)

  • 1. Homology modeling of human transketolase: description of critical sites useful for drug design and study of the cofactor binding mode.
    Obiol-Pardo C; Rubio-Martinez J
    J Mol Graph Model; 2009 Feb; 27(6):723-34. PubMed ID: 19111488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution.
    Nikkola M; Lindqvist Y; Schneider G
    J Mol Biol; 1994 May; 238(3):387-404. PubMed ID: 8176731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1.
    He W; Wang Y; Liu W; Zhou CZ
    BMC Struct Biol; 2007 Jun; 7():38. PubMed ID: 17570834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure modeling, ligand binding, and binding affinity calculation (LR-MM-PBSA) of human heparanase for inhibition and drug design.
    Zhou Z; Bates M; Madura JD
    Proteins; 2006 Nov; 65(3):580-92. PubMed ID: 16972282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of R and S isoforms of 12-lipoxygenases: homology modeling and docking studies.
    Aparoy P; Leela T; Reddy RN; Reddanna P
    J Mol Graph Model; 2009 Feb; 27(6):744-50. PubMed ID: 19147381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and characterization of Plasmodium falciparum transketolase.
    Joshi S; Singh AR; Kumar A; Misra PC; Siddiqi MI; Saxena JK
    Mol Biochem Parasitol; 2008 Jul; 160(1):32-41. PubMed ID: 18456347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homology modeling of human sialidase enzymes NEU1, NEU3 and NEU4 based on the crystal structure of NEU2: hints for the design of selective NEU3 inhibitors.
    Magesh S; Suzuki T; Miyagi T; Ishida H; Kiso M
    J Mol Graph Model; 2006 Oct; 25(2):196-207. PubMed ID: 16427342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and validation of a RET TK catalytic domain by homology modeling.
    Tuccinardi T; Manetti F; Schenone S; Martinelli A; Botta M
    J Chem Inf Model; 2007; 47(2):644-55. PubMed ID: 17295463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of the coenzyme and formation of the transketolase active center.
    Kochetov G; Sevostyanova IA
    IUBMB Life; 2005 Jul; 57(7):491-7. PubMed ID: 16081370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae.
    McGuire AT; Keates RA; Cook S; Mangroo D
    Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE; Tabita FR
    Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology modeling and molecular dynamics study of West Nile virus NS3 protease: a molecular basis for the catalytic activity increased by the NS2B cofactor.
    Zhou H; Singh NJ; Kim KS
    Proteins; 2006 Nov; 65(3):692-701. PubMed ID: 16972281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of constants of substrate primary binding with baker's yeast transketolase by kinetic modelling.
    Selivanov VA; Meshalkina LE; Kovina MV; Kochetov GA
    Biochemistry (Mosc); 1997 Apr; 62(4):425-32. PubMed ID: 9275280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Saccharomyces cerevisiae 3'-phosphoadenosine-5'-phosphosulfate reductase complexed with adenosine 3',5'-bisphosphate.
    Yu Z; Lemongello D; Segel IH; Fisher AJ
    Biochemistry; 2008 Dec; 47(48):12777-86. PubMed ID: 18991405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking.
    Li W; Tang Y; Liu H; Cheng J; Zhu W; Jiang H
    Proteins; 2008 May; 71(2):938-49. PubMed ID: 18004755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisiae.
    Golbik R; Meshalkina LE; Sandalova T; Tittmann K; Fiedler E; Neef H; König S; Kluger R; Kochetov GA; Schneider G; Hübner G
    FEBS J; 2005 Mar; 272(6):1326-42. PubMed ID: 15752351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative protein modeling and surface analysis of Leishmania sirtuin: A potential target for antileishmanial drug discovery.
    Kadam RU; Kiran VM; Roy N
    Bioorg Med Chem Lett; 2006 Dec; 16(23):6013-8. PubMed ID: 16982188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and functioning mechanism of transketolase.
    Kochetov GA; Solovjeva ON
    Biochim Biophys Acta; 2014 Sep; 1844(9):1608-18. PubMed ID: 24929114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.