BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19111488)

  • 41. Mutational analysis of the AtNUDT7 Nudix hydrolase from Arabidopsis thaliana reveals residues required for protein quaternary structure formation and activity.
    Olejnik K; Płochocka D; Grynberg M; Goch G; Gruszecki WI; Basińska T; Kraszewska E
    Acta Biochim Pol; 2009; 56(2):291-300. PubMed ID: 19448856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Half-of-the-sites reactivity of transketolase from Saccharomyces cerevisiae.
    Sevostyanova I; Solovjeva O; Selivanov V; Kochetov G
    Biochem Biophys Res Commun; 2009 Feb; 379(4):851-4. PubMed ID: 19121289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution.
    Lindqvist Y; Schneider G; Ermler U; Sundström M
    EMBO J; 1992 Jul; 11(7):2373-9. PubMed ID: 1628611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Homology modeling, docking and molecular dynamics of the Leishmania mexicana arginase: a description of the catalytic site useful for drug design.
    Méndez-Cuesta CA; Méndez-Lucio O; Castillo R
    J Mol Graph Model; 2012 Sep; 38():50-9. PubMed ID: 23085157
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of the farnesyl pyrophosphate synthase of Trypanosoma cruzi by homology modeling and molecular dynamics.
    Sigman L; Sánchez VM; Turjanski AG
    J Mol Graph Model; 2006 Nov; 25(3):345-52. PubMed ID: 16540358
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Homology modeling and SAR analysis of Schistosoma japonicum cathepsin D (SjCD) with statin inhibitors identify a unique active site steric barrier with potential for the design of specific inhibitors.
    Caffrey CR; Placha L; Barinka C; Hradilek M; Dostál J; Sajid M; McKerrow JH; Majer P; Konvalinka J; Vondrásek J
    Biol Chem; 2005 Apr; 386(4):339-49. PubMed ID: 15899696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Homology modeling, agonist binding site identification, and docking in octopamine receptor of Periplaneta americana.
    Hirashima A; Huang H
    Comput Biol Chem; 2008 Jun; 32(3):185-90. PubMed ID: 18430608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The crystal structure of human transketolase and new insights into its mode of action.
    Mitschke L; Parthier C; Schröder-Tittmann K; Coy J; Lüdtke S; Tittmann K
    J Biol Chem; 2010 Oct; 285(41):31559-70. PubMed ID: 20667822
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The N-terminal amino acid sequence of yeast transketolase.
    Nixon PF; Duggleby RG
    Protein Seq Data Anal; 1991 Dec; 4(6):325-6. PubMed ID: 1812485
    [No Abstract]   [Full Text] [Related]  

  • 52. Mechanical insights of oxythiamine compound as potent inhibitor for human transketolase-like protein 1 (TKTL1 protein).
    Mariadasse R; Biswal J; Jayaprakash P; Rao GR; Choubey SK; Rajendran S; Jeyakanthan J
    J Recept Signal Transduct Res; 2016; 36(3):233-42. PubMed ID: 26481897
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure of the extracellular glutathione S-transferase OvGST1 from the human pathogenic parasite Onchocerca volvulus.
    Perbandt M; Höppner J; Burmeister C; Lüersen K; Betzel C; Liebau E
    J Mol Biol; 2008 Mar; 377(2):501-11. PubMed ID: 18258257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homology modeling and molecular dynamics study of chorismate synthase from Shigella flexneri.
    Zhou H; Singh NJ; Kim KS
    J Mol Graph Model; 2006 Dec; 25(4):434-41. PubMed ID: 16616535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Some properties of multiple forms of transketolase from baker's yeast].
    Filippov MIu; Solov'eva ON; Kochetov GA
    Biokhimiia; 1995 Jul; 60(7):1089-94. PubMed ID: 7578564
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probing the structures of leishmanial farnesyl pyrophosphate synthases: homology modeling and docking studies.
    Mukherjee P; Desai PV; Srivastava A; Tekwani BL; Avery MA
    J Chem Inf Model; 2008 May; 48(5):1026-40. PubMed ID: 18419114
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.
    Meshalkina L; Nilsson U; Wikner C; Kostikowa T; Schneider G
    Eur J Biochem; 1997 Mar; 244(2):646-52. PubMed ID: 9119035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Function of the arginine residue in the active center of baker's yeast transketolase].
    Usmanov RA; Kochetov GA
    Biokhimiia; 1983 May; 48(5):772-81. PubMed ID: 6347264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of transketolase cofactors on its conformation and stability.
    Esakova OA; Meshalkina LE; Kochetov GA
    Life Sci; 2005 Nov; 78(1):8-13. PubMed ID: 16125202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Quaternary structure of transketolase from rat liver].
    Minin AA; Kochetov GA
    Biokhimiia; 1981 Feb; 46(2):195-201. PubMed ID: 7248378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.