BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 19111634)

  • 21. Structural and kinetic analysis of Schistosoma mansoni Adenylosuccinate Lyase (SmADSL).
    Romanello L; Serrão VHB; Torini JR; Bird LE; Nettleship JE; Rada H; Reddivari Y; Owens RJ; DeMarco R; Brandão-Neto J; Pereira HD
    Mol Biochem Parasitol; 2017 Jun; 214():27-35. PubMed ID: 28347672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three subunits contribute amino acids to the active site of tetrameric adenylosuccinate lyase: Lys268 and Glu275 are required.
    Brosius JL; Colman RF
    Biochemistry; 2002 Feb; 41(7):2217-26. PubMed ID: 11841213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A key role in catalysis for His89 of adenylosuccinate lyase of Bacillus subtilis.
    Brosius JL; Colman RF
    Biochemistry; 2000 Nov; 39(44):13336-43. PubMed ID: 11063569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arg40 is critical for stability and activity of Adenylosuccinate lyase; a purine salvage enzyme from Leishmania donovani.
    Mochi JA; Jani J; Tak K; Lodhi KK; Pananghat G; Pappachan A
    Arch Biochem Biophys; 2024 Jul; 757():110040. PubMed ID: 38750922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structure of adenylosuccinate lyase, an enzyme with dual activity in the de novo purine biosynthetic pathway.
    Toth EA; Yeates TO
    Structure; 2000 Feb; 8(2):163-74. PubMed ID: 10673438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical role of the Cryptococcus neoformans ADE2 protein in fungal de novo purine biosynthesis.
    Firestine SM; Misialek S; Toffaletti DL; Klem TJ; Perfect JR; Davisson VJ
    Arch Biochem Biophys; 1998 Mar; 351(1):123-34. PubMed ID: 9500840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenylosuccinate lyase deficiency: from the clinics to molecular biology.
    Marie S; Race V; Vincent MF; Van den Berghe G
    Adv Exp Med Biol; 2000; 486():79-82. PubMed ID: 11783532
    [No Abstract]   [Full Text] [Related]  

  • 28. Human malaria parasite orotate phosphoribosyltransferase: functional expression, characterization of kinetic reaction mechanism and inhibition profile.
    Krungkrai SR; Aoki S; Palacpac NM; Sato D; Mitamura T; Krungkrai J; Horii T
    Mol Biochem Parasitol; 2004 Apr; 134(2):245-55. PubMed ID: 15003844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the structural insights of enzymatic conformations for adenylosuccinate lyase receptor in malarial parasite
    Al-Malki ES
    J Recept Signal Transduct Res; 2021 Dec; 41(6):566-573. PubMed ID: 33073638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of adenylosuccinate lyase by L-alanosyl-5-aminoimidazole-4-carboxylic acid ribonucleotide (alanosyl-AICOR).
    Casey PJ; Lowenstein JM
    Biochem Pharmacol; 1987 Mar; 36(5):705-9. PubMed ID: 3827951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical, biochemical and molecular genetic correlations in adenylosuccinate lyase deficiency.
    Race V; Marie S; Vincent MF; Van den Berghe G
    Hum Mol Genet; 2000 Sep; 9(14):2159-65. PubMed ID: 10958654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the cDNA and the gene encoding murine adenylosuccinate lyase.
    Wong LJ; O'Brien WE
    Genomics; 1995 Jul; 28(2):341-3. PubMed ID: 8530047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping of the bovine genes of the de novo AMP synthesis pathway.
    Bønsdorff T; Gautier M; Farstad W; Rønningen K; Lingaas F; Olsaker I
    Anim Genet; 2004 Dec; 35(6):438-44. PubMed ID: 15566465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiochemical assay of adenylosuccinase: demonstration of parallel loss of activity toward both adenylosuccinate and succinylaminoimidazole carboxamide ribotide in liver of patients with the enzyme defect.
    Van den Bergh F; Vincent MF; Jaeken J; Van den Berghe G
    Anal Biochem; 1991 Mar; 193(2):287-91. PubMed ID: 1872474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human AICAR transformylase: role of the 4-carboxamide of AICAR in binding and catalysis.
    Wall M; Shim JH; Benkovic SJ
    Biochemistry; 2000 Sep; 39(37):11303-11. PubMed ID: 10985775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of the purine nucleotide cycle by inhibition of adenylosuccinate lyase produces skeletal muscle dysfunction.
    Swain JL; Hines JJ; Sabina RL; Harbury OL; Holmes EW
    J Clin Invest; 1984 Oct; 74(4):1422-7. PubMed ID: 6480832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of W181 in modulating kinetic properties of Plasmodium falciparum hypoxanthine guanine xanthine phosphoribosyltransferase.
    Roy S; Karmakar T; Nagappa LK; Prahlada Rao VS; Balasubramanian S; Balaram H
    Proteins; 2016 Nov; 84(11):1658-1669. PubMed ID: 27479359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis.
    Urscher M; Deponte M
    Biol Chem; 2009 Nov; 390(11):1171-83. PubMed ID: 19663684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization, heterologous expression and kinetic analysis of recombinant Plasmodium falciparum thymidylate kinase.
    Kandeel M; Kitade Y
    J Biochem; 2008 Aug; 144(2):245-50. PubMed ID: 18477629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aspartase/fumarase superfamily: a common catalytic strategy involving general base-catalyzed formation of a highly stabilized aci-carboxylate intermediate.
    Puthan Veetil V; Fibriansah G; Raj H; Thunnissen AM; Poelarends GJ
    Biochemistry; 2012 May; 51(21):4237-43. PubMed ID: 22551392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.