These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 19111780)

  • 1. Review of physical activity measurement using accelerometers in older adults: considerations for research design and conduct.
    Murphy SL
    Prev Med; 2009 Feb; 48(2):108-14. PubMed ID: 19111780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerometer assessment of physical activity in children: an update.
    Rowlands AV
    Pediatr Exerc Sci; 2007 Aug; 19(3):252-66. PubMed ID: 18019585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration and validation of wearable monitors.
    Bassett DR; Rowlands A; Trost SG
    Med Sci Sports Exerc; 2012 Jan; 44(1 Suppl 1):S32-8. PubMed ID: 22157772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conducting accelerometer-based activity assessments in field-based research.
    Trost SG; McIver KL; Pate RR
    Med Sci Sports Exerc; 2005 Nov; 37(11 Suppl):S531-43. PubMed ID: 16294116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical activity and energy expenditure measurements using accelerometers in older adults.
    Garatachea N; Torres Luque G; González Gallego J
    Nutr Hosp; 2010; 25(2):224-30. PubMed ID: 20449530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing physical activity using wearable monitors: measures of physical activity.
    Butte NF; Ekelund U; Westerterp KR
    Med Sci Sports Exerc; 2012 Jan; 44(1 Suppl 1):S5-12. PubMed ID: 22157774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults.
    Abel MG; Hannon JC; Sell K; Lillie T; Conlin G; Anderson D
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1155-64. PubMed ID: 19088773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical activity compliance: differences between overweight/obese and normal-weight adults.
    Davis JN; Hodges VA; Gillham MB
    Obesity (Silver Spring); 2006 Dec; 14(12):2259-65. PubMed ID: 17189554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interinstrument reliability of the RT3 accelerometer.
    Reneman M; Helmus M
    Int J Rehabil Res; 2010 Jun; 33(2):178-9. PubMed ID: 19398920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of two ActiGraph accelerometer generations in the assessment of physical activity in free living conditions.
    Vanhelst J; Mikulovic J; Bui-Xuan G; Dieu O; Blondeau T; Fardy P; Béghin L
    BMC Res Notes; 2012 Apr; 5():187. PubMed ID: 22534207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective physical activity measurement in people with multiple sclerosis: a review of the literature.
    Casey B; Coote S; Donnelly A
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):124-131. PubMed ID: 28285547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study.
    Ferguson T; Rowlands AV; Olds T; Maher C
    Int J Behav Nutr Phys Act; 2015 Mar; 12():42. PubMed ID: 25890168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of a new wrist-worn accelerometer with a commonly used triaxial accelerometer under free-living conditions.
    Sasaki S; Ukawa S; Okada E; Wenjing Z; Kishi T; Sakamoto A; Tamakoshi A
    BMC Res Notes; 2018 Oct; 11(1):746. PubMed ID: 30342547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerometer assessment of physical activity in active, healthy older adults.
    Copeland JL; Esliger DW
    J Aging Phys Act; 2009 Jan; 17(1):17-30. PubMed ID: 19299836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How many days of monitoring predict physical activity and sedentary behaviour in older adults?
    Hart TL; Swartz AM; Cashin SE; Strath SJ
    Int J Behav Nutr Phys Act; 2011 Jun; 8():62. PubMed ID: 21679426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The technology of accelerometry-based activity monitors: current and future.
    Chen KY; Bassett DR
    Med Sci Sports Exerc; 2005 Nov; 37(11 Suppl):S490-500. PubMed ID: 16294112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity energy expenditure assessment system based on activity classification using multi-site triaxial accelerometers.
    Dongwoo K; Kim HC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2285-7. PubMed ID: 18002447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of interdevice measurement difference of pedometers in younger and older adults.
    Ayabe M; Ishii K; Takayama K; Aoki J; Tanaka H
    Br J Sports Med; 2010 Feb; 44(2):95-9. PubMed ID: 18308892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objective monitoring of physical activity in children: considerations for instrument selection.
    McClain JJ; Tudor-Locke C
    J Sci Med Sport; 2009 Sep; 12(5):526-33. PubMed ID: 19054715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.