BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19112039)

  • 1. Effect of dissolved gas on efficacy of sonochemical reactors for microbial cell disruption: Experimental and numerical analysis.
    Mahulkar AV; Riedel C; Gogate PR; Neis U; Pandit AB
    Ultrason Sonochem; 2009 Jun; 16(5):635-43. PubMed ID: 19112039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results.
    Klíma J; Frias-Ferrer A; González-García J; Ludvík J; Sáez V; Iniesta J
    Ultrason Sonochem; 2007 Jan; 14(1):19-28. PubMed ID: 16545594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.
    Hodnett M; Choi MJ; Zeqiri B
    Ultrason Sonochem; 2007 Jan; 14(1):29-40. PubMed ID: 16549381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review and assessment of hydrodynamic cavitation as a technology for the future.
    Gogate PR; Pandit AB
    Ultrason Sonochem; 2005 Jan; 12(1-2):21-7. PubMed ID: 15474948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the physical origin of conical bubble structure under an ultrasonic horn.
    Dubus B; Vanhille C; Campos-Pozuelo C; Granger C
    Ultrason Sonochem; 2010 Jun; 17(5):810-8. PubMed ID: 20371200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonochemical reaction with microbubbles generated by hollow ultrasonic horn.
    Makuta T; Aizawa Y; Suzuki R
    Ultrason Sonochem; 2013 Jul; 20(4):997-1001. PubMed ID: 23332459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of ultrasonic disinfection of Escherichia coli in the presence of titanium dioxide particles.
    Kubo M; Onodera R; Shibasaki-Kitakawa N; Tsumoto K; Yonemoto T
    Biotechnol Prog; 2005; 21(3):897-901. PubMed ID: 15932271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A radial mode ultrasonic horn for the inactivation of Escherichia coli K12.
    Hunter G; Lucas M; Watson I; Parton R
    Ultrason Sonochem; 2008 Feb; 15(2):101-9. PubMed ID: 17368071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases.
    Brotchie A; Statham T; Zhou M; Dharmarathne L; Grieser F; Ashokkumar M
    Langmuir; 2010 Aug; 26(15):12690-5. PubMed ID: 20593787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of dichlorvos containing wastewaters using sonochemical reactors.
    Golash N; Gogate PR
    Ultrason Sonochem; 2012 Sep; 19(5):1051-60. PubMed ID: 22456064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors.
    Kirpalani DM; McQuinn KJ
    Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation.
    Sokka SD; Gauthier TP; Hynynen K
    Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors.
    Asakura Y; Nishida T; Matsuoka T; Koda S
    Ultrason Sonochem; 2008 Mar; 15(3):244-50. PubMed ID: 17548225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some aspects of the design of sonochemical reactors.
    Gogate PR; Wilhelm AM; Pandit AB
    Ultrason Sonochem; 2003 Oct; 10(6):325-30. PubMed ID: 12927607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for comparing the efficiency of ultrasound irradiation independent of the shape and the volume of the reaction vessel in sonochemical experiments.
    Gáplovský A; Gáplovský M; Kimura T; Toma S; Donovalova J; Vencel T
    Ultrason Sonochem; 2007 Sep; 14(6):695-8. PubMed ID: 17188015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrasonics; 2014 Jan; 54(1):227-32. PubMed ID: 23683796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.