BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19112551)

  • 1. Attenuation of skeletal muscle atrophy in cancer cachexia by D-myo-inositol 1,2,6-triphosphate.
    Russell ST; Siren PM; Siren MJ; Tisdale MJ
    Cancer Chemother Pharmacol; 2009 Aug; 64(3):517-27. PubMed ID: 19112551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of attenuation of protein loss in murine C2C12 myotubes by D-myo-inositol 1,2,6-triphosphate.
    Russell ST; Siren PM; Siren MJ; Tisdale MJ
    Exp Cell Res; 2010 Jan; 316(2):286-95. PubMed ID: 19716818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of induction of muscle protein loss by hyperglycaemia.
    Russell ST; Rajani S; Dhadda RS; Tisdale MJ
    Exp Cell Res; 2009 Jan; 315(1):16-25. PubMed ID: 18973755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of activation of dsRNA-dependent protein kinase (PKR) in muscle atrophy.
    Eley HL; Russell ST; Tisdale MJ
    Cell Signal; 2010 May; 22(5):783-90. PubMed ID: 20074639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling pathways initiated by beta-hydroxy-beta-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli.
    Eley HL; Russell ST; Baxter JH; Mukerji P; Tisdale MJ
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E923-31. PubMed ID: 17609254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of reactive oxygen species in protein degradation in murine myotubes induced by proteolysis-inducing factor and angiotensin II.
    Russell ST; Eley H; Tisdale MJ
    Cell Signal; 2007 Aug; 19(8):1797-806. PubMed ID: 17532611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation of proteolysis and muscle wasting by curcumin c3 complex in MAC16 colon tumour-bearing mice.
    Siddiqui RA; Hassan S; Harvey KA; Rasool T; Das T; Mukerji P; DeMichele S
    Br J Nutr; 2009 Oct; 102(7):967-75. PubMed ID: 19393114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of depression of muscle protein synthesis induced by lipopolysaccharide, tumor necrosis factor, and angiotensin II by beta-hydroxy-beta-methylbutyrate.
    Eley HL; Russell ST; Tisdale MJ
    Am J Physiol Endocrinol Metab; 2008 Dec; 295(6):E1409-16. PubMed ID: 18854427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of cancer cachexia.
    Tisdale MJ
    Physiol Rev; 2009 Apr; 89(2):381-410. PubMed ID: 19342610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuation of proteasome-induced proteolysis in skeletal muscle by {beta}-hydroxy-{beta}-methylbutyrate in cancer-induced muscle loss.
    Smith HJ; Mukerji P; Tisdale MJ
    Cancer Res; 2005 Jan; 65(1):277-83. PubMed ID: 15665304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of attenuation of angiotensin-II-induced protein degradation by insulin-like growth factor-I (IGF-I).
    Russell ST; Eley H; Tisdale MJ
    Cell Signal; 2007 Jul; 19(7):1583-95. PubMed ID: 17376652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of protein degradation in skeletal muscle by a phorbol ester involves upregulation of the ubiquitin-proteasome proteolytic pathway.
    Wyke SM; Tisdale MJ
    Life Sci; 2006 May; 78(25):2898-910. PubMed ID: 16343552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy.
    Vazeille E; Codran A; Claustre A; Averous J; Listrat A; Béchet D; Taillandier D; Dardevet D; Attaix D; Combaret L
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1181-90. PubMed ID: 18812460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting.
    Tisdale MJ
    J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 'cancer cachectic factor'.
    Tisdale MJ
    Support Care Cancer; 2003 Feb; 11(2):73-8. PubMed ID: 12560934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cancer cachexia on the activity of tripeptidyl-peptidase II in skeletal muscle.
    Chand A; Wyke SM; Tisdale MJ
    Cancer Lett; 2005 Feb; 218(2):215-22. PubMed ID: 15670899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downregulation of ubiquitin-dependent protein degradation in murine myotubes during hyperthermia by eicosapentaenoic acid.
    Smith HJ; Khal J; Tisdale MJ
    Biochem Biophys Res Commun; 2005 Jun; 332(1):83-8. PubMed ID: 15896302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the anticatabolic effects of leucine and Ca-β-hydroxy-β-methylbutyrate in experimental models of cancer cachexia.
    Mirza KA; Pereira SL; Voss AC; Tisdale MJ
    Nutrition; 2014; 30(7-8):807-13. PubMed ID: 24984997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival.
    Zhou X; Wang JL; Lu J; Song Y; Kwak KS; Jiao Q; Rosenfeld R; Chen Q; Boone T; Simonet WS; Lacey DL; Goldberg AL; Han HQ
    Cell; 2010 Aug; 142(4):531-43. PubMed ID: 20723755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleavage of caspases-1, -3, -6, -8 and -9 substrates by proteases in skeletal muscles from mice undergoing cancer cachexia.
    Belizário JE; Lorite MJ; Tisdale MJ
    Br J Cancer; 2001 Apr; 84(8):1135-40. PubMed ID: 11308266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.