These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 19112563)
1. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs. Bégu D; Araya A Curr Genet; 2009 Feb; 55(1):69-79. PubMed ID: 19112563 [TBL] [Abstract][Full Text] [Related]
2. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Groth-Malonek M; Pruchner D; Grewe F; Knoop V Mol Biol Evol; 2005 Jan; 22(1):117-25. PubMed ID: 15356283 [TBL] [Abstract][Full Text] [Related]
3. RNA editing restores critical domains of a group I intron in fern mitochondria. Bégu D; Castandet B; Araya A Curr Genet; 2011 Oct; 57(5):317-25. PubMed ID: 21701904 [TBL] [Abstract][Full Text] [Related]
4. Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. Malek O; Knoop V RNA; 1998 Dec; 4(12):1599-609. PubMed ID: 9848656 [TBL] [Abstract][Full Text] [Related]
5. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Dombrovska O; Qiu YL Mol Phylogenet Evol; 2004 Jul; 32(1):246-63. PubMed ID: 15186811 [TBL] [Abstract][Full Text] [Related]
6. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Turmel M; Otis C; Lemieux C Plant Cell; 2003 Aug; 15(8):1888-903. PubMed ID: 12897260 [TBL] [Abstract][Full Text] [Related]
7. Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Groth-Malonek M; Wahrmund U; Polsakiewicz M; Knoop V Mol Biol Evol; 2007 Apr; 24(4):1068-74. PubMed ID: 17283365 [TBL] [Abstract][Full Text] [Related]
8. Mosses share mitochondrial group II introns with flowering plants, not with liverworts. Pruchner D; Nassal B; Schindler M; Knoop V Mol Genet Genomics; 2001 Dec; 266(4):608-13. PubMed ID: 11810232 [TBL] [Abstract][Full Text] [Related]
9. RNA editing status of nad7 intron domains in wheat mitochondria. Carrillo C; Bonen L Nucleic Acids Res; 1997 Jan; 25(2):403-9. PubMed ID: 9016571 [TBL] [Abstract][Full Text] [Related]
10. RNA editing of a group II intron in Oenothera as a prerequisite for splicing. Börner GV; Mörl M; Wissinger B; Brennicke A; Schmelzer C Mol Gen Genet; 1995 Mar; 246(6):739-44. PubMed ID: 7898443 [TBL] [Abstract][Full Text] [Related]
11. Introducing intron locus cox1i624 for phylogenetic analyses in Bryophytes: on the issue of Takakia as sister genus to all other extant mosses. Volkmar U; Knoop V J Mol Evol; 2010 May; 70(5):506-18. PubMed ID: 20473660 [TBL] [Abstract][Full Text] [Related]
12. Loss of the mitochondrial cox2 intron 1 in a family of monocotyledonous plants and utilization of mitochondrial intron sequences for the construction of a nuclear intron. Kudla J; Albertazzi FJ; Blazević D; Hermann M; Bock R Mol Genet Genomics; 2002 Apr; 267(2):223-30. PubMed ID: 11976966 [TBL] [Abstract][Full Text] [Related]
13. A novel additional group II intron distinguishes the mitochondrial rps3 gene in gymnosperms. Regina TM; Picardi E; Lopez L; Pesole G; Quagliariello C J Mol Evol; 2005 Feb; 60(2):196-206. PubMed ID: 15785848 [TBL] [Abstract][Full Text] [Related]
14. Lineage-specific group II intron gains and losses of the mitochondrial rps3 gene in gymnosperms. Regina TM; Quagliariello C Plant Physiol Biochem; 2010 Aug; 48(8):646-54. PubMed ID: 20605476 [TBL] [Abstract][Full Text] [Related]
15. Group I introns in the liverwort mitochondrial genome: the gene coding for subunit 1 of cytochrome oxidase shares five intron positions with its fungal counterparts. Ohta E; Oda K; Yamato K; Nakamura Y; Takemura M; Nozato N; Akashi K; Ohyama K; Michel F Nucleic Acids Res; 1993 Mar; 21(5):1297-305. PubMed ID: 7681945 [TBL] [Abstract][Full Text] [Related]
16. The cox2 locus of the primitive angiosperm plant Acorus calamus: molecular structure, transcript processing and RNA editing. Albertazzi FJ; Kudla J; Bock R Mol Gen Genet; 1998 Oct; 259(6):591-600. PubMed ID: 9819051 [TBL] [Abstract][Full Text] [Related]
17. Splicing and editing of rps10 transcripts in potato mitochondria. Zanlungo S; Quiñones V; Moenne A; Holuigue L; Jordana X Curr Genet; 1995 May; 27(6):565-71. PubMed ID: 7553943 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor. Ahlert D; Piepenburg K; Kudla J; Bock R J Plant Res; 2006 Jul; 119(4):363-71. PubMed ID: 16763758 [TBL] [Abstract][Full Text] [Related]
19. The ribosomal RNA gene region in Acanthamoeba castellanii mitochondrial DNA. A case of evolutionary transfer of introns between mitochondria and plastids? Lonergan KM; Gray MW J Mol Biol; 1994 Jun; 239(4):476-99. PubMed ID: 8006963 [TBL] [Abstract][Full Text] [Related]
20. Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria. Knoop V; Schuster W; Wissinger B; Brennicke A EMBO J; 1991 Nov; 10(11):3483-93. PubMed ID: 1915303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]