BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 19112826)

  • 1. [Creatine kinase isoenzymes--characterization and functions in cell].
    Grzyb K; Skorkowski EF
    Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis.
    Vyssokikh MY; Brdiczka D
    Acta Biochim Pol; 2003; 50(2):389-404. PubMed ID: 12833165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and some properties of two creatine kinase isoforms from herring (Clupea harengus) spermatozoa.
    Grzyb K; Skorkowski EF
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Jun; 144(2):152-8. PubMed ID: 16564717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of mitochondrial creatine kinase.
    Fritz-Wolf K; Schnyder T; Wallimann T; Kabsch W
    Nature; 1996 May; 381(6580):341-5. PubMed ID: 8692275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain.
    Friedman DL; Roberts R
    J Comp Neurol; 1994 May; 343(3):500-11. PubMed ID: 7517967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and expression of mitochondrial and protoflagellar creatine kinases from a marine sponge: implications for the origin of intracellular energy transport systems.
    Sona S; Suzuki T; Ellington WR
    Biochem Biophys Res Commun; 2004 May; 317(4):1207-14. PubMed ID: 15094398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isozymes of creatine kinase in mammalian cell cultures.
    Van Brussel E; Yang JJ; Seraydarian MW
    J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer.
    Stachowiak O; Dolder M; Wallimann T
    Biochemistry; 1996 Dec; 35(48):15522-8. PubMed ID: 8952506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintained coupling of oxidative phosphorylation to creatine kinase activity in sarcomeric mitochondrial creatine kinase-deficient mice.
    Boehm E; Veksler V; Mateo P; Lenoble C; Wieringa B; Ventura-Clapier R
    J Mol Cell Cardiol; 1998 May; 30(5):901-12. PubMed ID: 9618231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial apoptosis without VDAC.
    Galluzzi L; Kroemer G
    Nat Cell Biol; 2007 May; 9(5):487-9. PubMed ID: 17473857
    [No Abstract]   [Full Text] [Related]  

  • 12. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle].
    Saks VA; Seppet EK; Liulina NV
    Biokhimiia; 1977 Apr; 42(4):579-88. PubMed ID: 870086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils].
    Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI
    Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The supramolecular organization and functions creatine kinase of system].
    Roslyĭ IM; Abramov SV
    Usp Fiziol Nauk; 2005; 36(3):65-71. PubMed ID: 16152789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology.
    Wallimann T; Dolder M; Schlattner U; Eder M; Hornemann T; O'Gorman E; Rück A; Brdiczka D
    Biofactors; 1998; 8(3-4):229-34. PubMed ID: 9914824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The creatine kinase system and pleiotropic effects of creatine.
    Wallimann T; Tokarska-Schlattner M; Schlattner U
    Amino Acids; 2011 May; 40(5):1271-96. PubMed ID: 21448658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial creatine kinase in contact sites: interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage.
    Dolder M; Wendt S; Wallimann T
    Biol Signals Recept; 2001; 10(1-2):93-111. PubMed ID: 11223643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture.
    Seraydarian MW
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functions and effects of creatine in the central nervous system.
    Andres RH; Ducray AD; Schlattner U; Wallimann T; Widmer HR
    Brain Res Bull; 2008 Jul; 76(4):329-43. PubMed ID: 18502307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function.
    Guzun R; Timohhina N; Tepp K; Gonzalez-Granillo M; Shevchuk I; Chekulayev V; Kuznetsov AV; Kaambre T; Saks VA
    Amino Acids; 2011 May; 40(5):1333-48. PubMed ID: 21390528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.