These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19112830)

  • 21. Critical roles of RNA-binding proteins in miRNA biogenesis in Arabidopsis.
    Ren G; Yu B
    RNA Biol; 2012 Dec; 9(12):1424-8. PubMed ID: 23135480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis.
    Chen T; Cui P; Xiong L
    Nucleic Acids Res; 2015 Sep; 43(17):8283-98. PubMed ID: 26227967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and RNA interactions of the plant MicroRNA processing-associated protein HYL1.
    Rasia RM; Mateos J; Bologna NG; Burdisso P; Imbert L; Palatnik JF; Boisbouvier J
    Biochemistry; 2010 Sep; 49(38):8237-9. PubMed ID: 20735118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA.
    Yang X; Ren W; Zhao Q; Zhang P; Wu F; He Y
    Nucleic Acids Res; 2014 Oct; 42(19):12224-36. PubMed ID: 25294831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis.
    Yang L; Liu Z; Lu F; Dong A; Huang H
    Plant J; 2006 Sep; 47(6):841-50. PubMed ID: 16889646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant ARGONAUTES.
    Vaucheret H
    Trends Plant Sci; 2008 Jul; 13(7):350-8. PubMed ID: 18508405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.
    You CX; Zhao Q; Wang XF; Xie XB; Feng XM; Zhao LL; Shu HR; Hao YJ
    Plant Biotechnol J; 2014 Feb; 12(2):183-92. PubMed ID: 24119151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. mRNA adenosine methylase (MTA) deposits m
    Bhat SS; Bielewicz D; Gulanicz T; Bodi Z; Yu X; Anderson SJ; Szewc L; Bajczyk M; Dolata J; Grzelak N; Smolinski DJ; Gregory BD; Fray RG; Jarmolowski A; Szweykowska-Kulinska Z
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21785-21795. PubMed ID: 32817553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization of a 'plant-like' HYL1 homolog in the cnidarian
    Tripathi AM; Admoni Y; Fridrich A; Lewandowska M; Surm JM; Aharoni R; Moran Y
    Elife; 2022 Mar; 11():. PubMed ID: 35289745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles of plant small RNAs in biotic stress responses.
    Ruiz-Ferrer V; Voinnet O
    Annu Rev Plant Biol; 2009; 60():485-510. PubMed ID: 19519217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyponastic Leaves 1 protects pri-miRNAs from nuclear exosome attack.
    Gao S; Wang J; Jiang N; Zhang S; Wang Y; Zhang J; Li N; Fang Y; Yang L; Chen S; Yan B; Huang T; Kuai B; Wang Y; Chang F; Ren G
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17429-17437. PubMed ID: 32636270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pentatricopeptide repeat proteins: a socket set for organelle gene expression.
    Schmitz-Linneweber C; Small I
    Trends Plant Sci; 2008 Dec; 13(12):663-70. PubMed ID: 19004664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation and functional specialization of small RNA-target nodes during plant development.
    Rubio-Somoza I; Cuperus JT; Weigel D; Carrington JC
    Curr Opin Plant Biol; 2009 Oct; 12(5):622-7. PubMed ID: 19699140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characteristics of cattle microRNAs by homology searching and small RNA cloning.
    Long JE; Chen HX
    Biochem Genet; 2009 Jun; 47(5-6):329-43. PubMed ID: 19267191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing.
    Vazquez F; Gasciolli V; Crété P; Vaucheret H
    Curr Biol; 2004 Feb; 14(4):346-51. PubMed ID: 14972688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Posttranscriptional upregulation by microRNAs.
    Vasudevan S
    Wiley Interdiscip Rev RNA; 2012; 3(3):311-30. PubMed ID: 22072587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-stabilized FHA2 suppresses miRNA biogenesis through interactions with DCL1 and HYL1.
    Park SJ; Choi SW; Kim GM; Møller C; Pai HS; Yang SW
    Mol Plant; 2021 Apr; 14(4):647-663. PubMed ID: 33524550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression.
    Zdanowicz A; Thermann R; Kowalska J; Jemielity J; Duncan K; Preiss T; Darzynkiewicz E; Hentze MW
    Mol Cell; 2009 Sep; 35(6):881-8. PubMed ID: 19782035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation.
    Montgomery TA; Howell MD; Cuperus JT; Li D; Hansen JE; Alexander AL; Chapman EJ; Fahlgren N; Allen E; Carrington JC
    Cell; 2008 Apr; 133(1):128-41. PubMed ID: 18342362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mimicry technology: suppressing small RNA activity in plants.
    Rubio-Somoza I; Manavella PA
    Methods Mol Biol; 2011; 732():131-7. PubMed ID: 21431710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.