These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 19113103)

  • 1. Anomalous diffusion in heterogeneous glass-forming liquids: temperature-dependent behavior.
    Langer JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051115. PubMed ID: 19113103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous diffusion and stretched exponentials in heterogeneous glass-forming liquids: low-temperature behavior.
    Langer JS; Mukhopadhyay S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061505. PubMed ID: 18643270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations.
    Kim K; Saito S
    J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating the stretched-exponential and super-Arrhenius behaviors in the structural relaxation of glass-forming liquids.
    Wang L; Li J; Fecht HJ
    J Phys Condens Matter; 2011 Apr; 23(15):155102. PubMed ID: 21436503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids.
    Sengupta S; Karmakar S
    J Chem Phys; 2014 Jun; 140(22):224505. PubMed ID: 24929405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica.
    Vogel M; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061504. PubMed ID: 15697371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-transformation-zone theory of viscosity, diffusion, and stretched exponential relaxation in amorphous solids.
    Langer JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051507. PubMed ID: 23004767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids.
    Harris KR
    J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stokes-Einstein relation of the liquid metal rubidium and its relationship to changes in the microscopic dynamics with increasing temperature.
    Demmel F; Tani A
    Phys Rev E; 2018 Jun; 97(6-1):062124. PubMed ID: 30011507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.
    Popova VA; Surovtsev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032308. PubMed ID: 25314447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fickian crossover and length scales from two point functions in supercooled liquids.
    Stariolo DA; Fabricius G
    J Chem Phys; 2006 Aug; 125(6):64505. PubMed ID: 16942296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Arrhenius behavior and fragile-to-strong transition of glass-forming liquids.
    Rosa ACP; Cruz C; Santana WS; Brito E; Moret MA
    Phys Rev E; 2020 Apr; 101(4-1):042131. PubMed ID: 32422727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length scales in glass-forming liquids and related systems: a review.
    Karmakar S; Dasgupta C; Sastry S
    Rep Prog Phys; 2016 Jan; 79(1):016601. PubMed ID: 26684508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition.
    Ito N; Richert R
    J Phys Chem B; 2007 May; 111(18):5016-22. PubMed ID: 17474705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition.
    Chong SH; Chen SH; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504101. PubMed ID: 21836212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glass dynamics and anomalous aging in a family of ionic liquids above the glass transition temperature.
    Shamim N; McKenna GB
    J Phys Chem B; 2010 Dec; 114(48):15742-52. PubMed ID: 21077592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-motion and the alpha relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior.
    Colmenero J; Alvarez F; Arbe A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041804. PubMed ID: 12005863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior.
    Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S
    J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.