These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 19113143)
1. Monte Carlo study of multiply crosslinked semiflexible polymer networks. Huisman EM; Storm C; Barkema GT Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051801. PubMed ID: 19113143 [TBL] [Abstract][Full Text] [Related]
2. The role of structure in the nonlinear mechanics of cross-linked semiflexible polymer networks. Kurniawan NA; Enemark S; Rajagopalan R J Chem Phys; 2012 Feb; 136(6):065101. PubMed ID: 22360221 [TBL] [Abstract][Full Text] [Related]
4. Cohesive and adhesive properties of crosslinked semiflexible biopolymer networks. Zhang Y; DeBenedictis EP; Keten S Soft Matter; 2019 May; 15(18):3807-3816. PubMed ID: 30993297 [TBL] [Abstract][Full Text] [Related]
5. Affine-nonaffine transition in networks of nematically ordered semiflexible polymers. Missel AR; Bai M; Klug WS; Levine AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041907. PubMed ID: 21230313 [TBL] [Abstract][Full Text] [Related]
6. Stretching semiflexible polymer chains: evidence for the importance of excluded volume effects from Monte Carlo simulation. Hsu HP; Binder K J Chem Phys; 2012 Jan; 136(2):024901. PubMed ID: 22260610 [TBL] [Abstract][Full Text] [Related]
7. Theory of Semiflexible Filaments and Networks. Meng F; Terentjev EM Polymers (Basel); 2017 Feb; 9(2):. PubMed ID: 30970730 [TBL] [Abstract][Full Text] [Related]
8. Semiflexible polymers: dependence on ensemble and boundary orientations. Chaudhuri D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021803. PubMed ID: 17358360 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of finite semiflexible polymers and their loop and tail distributions. Kampmann TA; Kierfeld J J Chem Phys; 2017 Jul; 147(1):014901. PubMed ID: 28688427 [TBL] [Abstract][Full Text] [Related]
10. Frequency-dependent stiffening of semiflexible networks: a dynamical nonaffine to affine transition. Huisman EM; Storm C; Barkema GT Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061902. PubMed ID: 21230685 [TBL] [Abstract][Full Text] [Related]
11. Local mechanical response in semiflexible polymer networks subjected to an axisymmetric prestress. Head DA; Mizuno D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022717. PubMed ID: 24032874 [TBL] [Abstract][Full Text] [Related]
12. Shapes of semiflexible polymers in confined spaces. Liu Y; Chakraborty B Phys Biol; 2008 Jun; 5(2):026004. PubMed ID: 18560044 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear elasticity of cross-linked networks. John K; Caillerie D; Peyla P; Raoult A; Misbah C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042721. PubMed ID: 23679463 [TBL] [Abstract][Full Text] [Related]
14. Entropic forces generated by grafted semiflexible polymers. Gholami A; Wilhelm J; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041803. PubMed ID: 17155084 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulation of the self-assembly and phase behavior of semiflexible equilibrium polymers. Lü X; Kindt JT J Chem Phys; 2004 Jun; 120(21):10328-38. PubMed ID: 15268058 [TBL] [Abstract][Full Text] [Related]
16. Loops versus lines and the compression stiffening of cells. Gandikota MC; Pogoda K; van Oosten A; Engstrom TA; Patteson AE; Janmey PA; Schwarz JM Soft Matter; 2020 May; 16(18):4389-4406. PubMed ID: 32249282 [TBL] [Abstract][Full Text] [Related]
17. On the role of the filament length distribution in the mechanics of semiflexible networks. Bai M; Missel AR; Levine AJ; Klug WS Acta Biomater; 2011 May; 7(5):2109-18. PubMed ID: 21187172 [TBL] [Abstract][Full Text] [Related]
18. Generalized theory of semiflexible polymers. Wiggins PA; Nelson PC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031906. PubMed ID: 16605557 [TBL] [Abstract][Full Text] [Related]
19. Stretching of semiflexible polymers with elastic bonds. Kierfeld J; Niamploy O; Sa-yakanit V; Lipowsky R Eur Phys J E Soft Matter; 2004 May; 14(1):17-34. PubMed ID: 15221587 [TBL] [Abstract][Full Text] [Related]
20. Bimodality in the transverse fluctuations of a grafted semiflexible polymer and the diffusion-convection analogue: an effective-medium approach. Benetatos P; Munk T; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):030801. PubMed ID: 16241403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]