These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19113172)

  • 21. Determination of prestress and elastic properties of virus capsids.
    Aggarwal A
    Phys Rev E; 2018 Mar; 97(3-1):032414. PubMed ID: 29776150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts.
    Wilts BD; Schaap IAT; Schmidt CF
    Biophys J; 2015 May; 108(10):2541-2549. PubMed ID: 25992732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viral capsid equilibrium dynamics reveals nonuniform elastic properties.
    May ER; Aggarwal A; Klug WS; Brooks CL
    Biophys J; 2011 Jun; 100(11):L59-61. PubMed ID: 21641297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacteriophage capsids: tough nanoshells with complex elastic properties.
    Ivanovska IL; de Pablo PJ; Ibarra B; Sgalari G; MacKintosh FC; Carrascosa JL; Schmidt CF; Wuite GJ
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7600-5. PubMed ID: 15133147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Twenty-four near-instabilities of Caspar-Klug viruses.
    Englert F; Peeters K; Taormina A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031908. PubMed ID: 18851066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ground state instabilities of protein shells are eliminated by buckling.
    Singh AR; Perotti LE; Bruinsma RF; Rudnick J; Klug WS
    Soft Matter; 2017 Nov; 13(44):8300-8308. PubMed ID: 29072764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shapes of sedimenting soft elastic capsules in a viscous fluid.
    Boltz HH; Kierfeld J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033003. PubMed ID: 26465552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the impact of loading rate on the mechanical properties of viral nanoparticles.
    Snijder J; Ivanovska IL; Baclayon M; Roos WH; Wuite GJ
    Micron; 2012 Dec; 43(12):1343-50. PubMed ID: 22609100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Form, symmetry and packing of biomacromolecules. IV. Filled capsids of cowpea, tobacco, MS2 and pariacoto RNA viruses.
    Janner A
    Acta Crystallogr A; 2011 Nov; 67(Pt 6):517-20. PubMed ID: 22011467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled integration of polymers into viral capsids.
    Comellas-Aragonès M; de la Escosura A; Dirks AT; van der Ham A; Fusté-Cuñé A; Cornelissen JJ; Nolte RJ
    Biomacromolecules; 2009 Nov; 10(11):3141-7. PubMed ID: 19839603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internal DNA pressure modifies stability of WT phage.
    Ivanovska I; Wuite G; Jönsson B; Evilevitch A
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9603-8. PubMed ID: 17535894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stepwise reversible nanomechanical buckling in a viral capsid.
    Vörös Z; Csík G; Herényi L; Kellermayer MS
    Nanoscale; 2017 Jan; 9(3):1136-1143. PubMed ID: 28009879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry.
    van Vlijmen HW; Karplus M
    J Mol Biol; 2005 Jul; 350(3):528-42. PubMed ID: 15922356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Form, symmetry and packing of biomacromolecules. V. Shells with boundaries at anti-nodes of resonant vibrations in icosahedral RNA viruses.
    Janner A
    Acta Crystallogr A; 2011 Nov; 67(Pt 6):521-32. PubMed ID: 22011468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale.
    Roos WH; Gibbons MM; Arkhipov A; Uetrecht C; Watts NR; Wingfield PT; Steven AC; Heck AJ; Schulten K; Klug WS; Wuite GJ
    Biophys J; 2010 Aug; 99(4):1175-81. PubMed ID: 20713001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the Initial Steps of Salt-Stable Cowpea Chlorotic Mottle Virus Capsid Assembly with Atomistic Force Fields.
    Antal Z; Szoverfi J; Fejer SN
    J Chem Inf Model; 2017 Apr; 57(4):910-917. PubMed ID: 28383276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical elasticity as a physical signature of conformational dynamics in a virus particle.
    Castellanos M; Pérez R; Carrasco C; Hernando-Pérez M; Gómez-Herrero J; de Pablo PJ; Mateu MG
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):12028-33. PubMed ID: 22797893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Built-in mechanical stress in viral shells.
    Carrasco C; Luque A; Hernando-Pérez M; Miranda R; Carrascosa JL; Serena PA; de Ridder M; Raman A; Gómez-Herrero J; Schaap IA; Reguera D; de Pablo PJ
    Biophys J; 2011 Feb; 100(4):1100-8. PubMed ID: 21320456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lateral migration of an elastic capsule by optical force in a uniform flow.
    Chang CB; Huang WX; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066306. PubMed ID: 23368037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insights into magnetic clusters grown inside virus capsids.
    Jaafar M; Aljabali AA; Berlanga I; Mas-Ballesté R; Saxena P; Warren S; Lomonossoff GP; Evans DJ; de Pablo PJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20936-42. PubMed ID: 25405995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.