These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19113172)

  • 41. Theory of conformational transitions of viral shells.
    Guérin T; Bruinsma R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061911. PubMed ID: 18233873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural transitions in Cowpea chlorotic mottle virus (CCMV).
    Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T
    Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural transitions and energy landscape for Cowpea Chlorotic Mottle Virus capsid mechanics from nanomanipulation in vitro and in silico.
    Kononova O; Snijder J; Brasch M; Cornelissen J; Dima RI; Marx KA; Wuite GJ; Roos WH; Barsegov V
    Biophys J; 2013 Oct; 105(8):1893-903. PubMed ID: 24138865
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Osmotic shock and the strength of viral capsids.
    Cordova A; Deserno M; Gelbart WM; Ben-Shaul A
    Biophys J; 2003 Jul; 85(1):70-4. PubMed ID: 12829465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition.
    Polles G; Indelicato G; Potestio R; Cermelli P; Twarock R; Micheletti C
    PLoS Comput Biol; 2013; 9(11):e1003331. PubMed ID: 24244139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spontaneous curvature as a regulator of the size of virus capsids.
    Siber A; Majdandzić A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021910. PubMed ID: 19792154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Osmotic buckling of spherical capsules.
    Knoche S; Kierfeld J
    Soft Matter; 2014 Nov; 10(41):8358-69. PubMed ID: 25209240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of phi29.
    Morais MC; Choi KH; Koti JS; Chipman PR; Anderson DL; Rossmann MG
    Mol Cell; 2005 Apr; 18(2):149-59. PubMed ID: 15837419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid.
    Kononova O; Maksudov F; Marx KA; Barsegov V
    J Phys Condens Matter; 2018 Jan; 30(4):044006. PubMed ID: 29231176
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression.
    Safaei B; Naseradinmousavi P; Rahmani A
    J Mol Graph Model; 2016 Apr; 65():43-60. PubMed ID: 26930445
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of nonuniform geometry on nanoindentation of viral capsids.
    Gibbons MM; Klug WS
    Biophys J; 2008 Oct; 95(8):3640-9. PubMed ID: 18621831
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy.
    Klem MT; Willits D; Young M; Douglas T
    J Am Chem Soc; 2003 Sep; 125(36):10806-7. PubMed ID: 12952458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elastic properties, Young's modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics.
    Lorenzo AC; Caffarena ER
    J Biomech; 2005 Jul; 38(7):1527-33. PubMed ID: 15922764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CapsidMesh: Atomic-detail structured mesh representation of icosahedral viral capsids and the study of their mechanical properties.
    Alonzo-Velázquez JL; Botello-Rionda S; Herrera-Guzmán R; Carrillo-Tripp M
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2991. PubMed ID: 29603677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties.
    Lošdorfer Božič A; Šiber A; Podgornik R
    J Biol Phys; 2013 Mar; 39(2):215-28. PubMed ID: 23860870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase diagram of self-assembled viral capsid protein polymorphs.
    Lavelle L; Gingery M; Phillips M; Gelbart WM; Knobler CM; Cadena-Nava RD; Vega-Acosta JR; Pinedo-Torres LA; Ruiz-Garcia J
    J Phys Chem B; 2009 Mar; 113(12):3813-9. PubMed ID: 19673134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kirigami and the Caspar-Klug construction for viral shells with negative Gauss curvature.
    Perotti LE; Zhang K; Rudnick J; Bruinsma RF
    Phys Rev E; 2019 Feb; 99(2-1):022413. PubMed ID: 30934272
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy.
    Liashkovich I; Hafezi W; Kühn JE; Oberleithner H; Kramer A; Shahin V
    J Cell Sci; 2008 Jul; 121(Pt 14):2287-92. PubMed ID: 18559888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.