These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19113175)

  • 21. Characteristic times of biased random walks on complex networks.
    Bonaventura M; Nicosia V; Latora V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012803. PubMed ID: 24580277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent transport and energy flow patterns in photosynthesis under incoherent excitation.
    Pelzer KM; Can T; Gray SK; Morr DK; Engel GS
    J Phys Chem B; 2014 Mar; 118(10):2693-702. PubMed ID: 24498866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow transport by continuous time quantum walks.
    Mülken O; Blumen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016101. PubMed ID: 15697652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recurrence and Pólya number of quantum walks.
    Stefanák M; Jex I; Kiss T
    Phys Rev Lett; 2008 Jan; 100(2):020501. PubMed ID: 18232840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Universal behavior of quantum walks with long-range steps.
    Mülken O; Pernice V; Blumen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021117. PubMed ID: 18351997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlocal biased random walks and fractional transport on directed networks.
    Riascos AP; Michelitsch TM; Pizarro-Medina A
    Phys Rev E; 2020 Aug; 102(2-1):022142. PubMed ID: 32942357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometrical aspects of quantum walks on random two-dimensional structures.
    Anishchenko A; Blumen A; Mülken O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062126. PubMed ID: 24483405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From classical to quantum walks with stochastic resetting on networks.
    Wald S; Böttcher L
    Phys Rev E; 2021 Jan; 103(1-1):012122. PubMed ID: 33601601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quadratic Speedup for Spatial Search by Continuous-Time Quantum Walk.
    Apers S; Chakraborty S; Novo L; Roland J
    Phys Rev Lett; 2022 Oct; 129(16):160502. PubMed ID: 36306753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast and slow dynamics for classical and quantum walks on mean-field small world networks.
    Souza AMC; Andrade RFS
    Sci Rep; 2019 Dec; 9(1):19143. PubMed ID: 31844101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Convergence of continuous-time quantum walks on the line.
    Gottlieb AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):047102. PubMed ID: 16383575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First passage time for random walks in heterogeneous networks.
    Hwang S; Lee DS; Kahng B
    Phys Rev Lett; 2012 Aug; 109(8):088701. PubMed ID: 23002779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noisy quantum cellular automata for quantum versus classical excitation transfer.
    Avalle M; Serafini A
    Phys Rev Lett; 2014 May; 112(17):170403. PubMed ID: 24836223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extreme events and event size fluctuations in biased random walks on networks.
    Kishore V; Santhanam MS; Amritkar RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056120. PubMed ID: 23004834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limit theorem for continuous-time quantum walk on the line.
    Konno N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026113. PubMed ID: 16196650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal transport on supply-demand networks.
    Chen YH; Wang BH; Zhao LC; Zhou C; Zhou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066105. PubMed ID: 20866476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorbate-localized versus substrate-mediated excitation mechanisms for generation of coherent Cs-Cu stretching vibration at Cu(111).
    Watanabe K; Matsumoto Y; Yasuike T; Nobusada K
    J Phys Chem A; 2011 Sep; 115(34):9528-35. PubMed ID: 21539294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum to classical transition for random walks.
    Brun TA; Carteret HA; Ambainis A
    Phys Rev Lett; 2003 Sep; 91(13):130602. PubMed ID: 14525294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Random walks on weighted networks.
    Zhang Z; Shan T; Chen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012112. PubMed ID: 23410288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum aspects of evolution: a contribution towards evolutionary explorations of genotype networks via quantum walks.
    Santiago-Alarcon D; Tapia-McClung H; Lerma-Hernández S; Venegas-Andraca SE
    J R Soc Interface; 2020 Nov; 17(172):20200567. PubMed ID: 33171071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.