These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19113214)

  • 21. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ferrohydrodynamic evaluation of rotational viscosity and relaxation in certain ferrofluids.
    Patel R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016324. PubMed ID: 23005542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetoviscosity of semidilute ferrofluids and the role of dipolar interactions: comparison of molecular simulations and dynamical mean-field theory.
    Ilg P; Kröger M; Hess S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031205. PubMed ID: 15903418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic susceptibility, nanorheology, and magnetoviscosity of magnetic nanoparticles in viscoelastic environments.
    Ilg P; Evangelopoulos AEAS
    Phys Rev E; 2018 Mar; 97(3-1):032610. PubMed ID: 29776044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonequilibrium Brownian dynamics analysis of negative viscosity induced in a magnetic fluid subjected to both ac magnetic and shear flow fields.
    Morimoto H; Maekawa T; Matsumoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061508. PubMed ID: 12188733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comment on "Magnetoviscosity and relaxation in ferrofluids".
    Shliomis MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):063501, 063502. PubMed ID: 11736222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of hydrophilic silica nanoparticles on the magnetorheological properties of ferrofluids: a study using opto-magnetorheometer.
    Felicia LJ; Philip J
    Langmuir; 2015 Mar; 31(11):3343-53. PubMed ID: 25734232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood.
    Khanafer KM; Gadhoke P; Berguer R; Bull JL
    Biorheology; 2006; 43(5):661-79. PubMed ID: 17047283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of an electric field on the non-Newtonian response of a hybrid-aligned nematic cell under shear flow.
    Guillén AD; Mendoza CI
    J Chem Phys; 2007 May; 126(20):204905. PubMed ID: 17552798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural properties of charge-stabilized ferrofluids under a magnetic field: a Brownian dynamics study.
    Mériguet G; Jardat M; Turq P
    J Chem Phys; 2004 Sep; 121(12):6078-85. PubMed ID: 15367036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow.
    Chamorro MG; Reyes FV; Garzó V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052205. PubMed ID: 26651687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of the Rheological Properties of Zn-Ferrite/Perfluoropolyether Oil-Based Ferrofluids.
    Chen F; Liu X; Li Z; Yan S; Fu H; Yan Z
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow.
    Cho CC; Chen CL; Chen CK
    Electrophoresis; 2012 Mar; 33(5):743-50. PubMed ID: 22522530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical analysis of steady generalized Newtonian blood flow in a 2D model of the carotid artery bifurcation.
    Baaijens JP; van Steenhoven AA; Janssen JD
    Biorheology; 1993; 30(1):63-74. PubMed ID: 8374103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
    Marrero VL; Tichy JA; Sahni O; Jansen KE
    J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.