These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. The formation of spikes in the displacement of miscible fluids. Rashidnia N; Balasubramaniam R; Schroer RT Ann N Y Acad Sci; 2004 Nov; 1027():311-6. PubMed ID: 15644364 [TBL] [Abstract][Full Text] [Related]
9. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number. Meng X; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043305. PubMed ID: 26565362 [TBL] [Abstract][Full Text] [Related]
11. Viscous properties of isotropic fluids composed of linear molecules: departure from the classical Navier-Stokes theory in nano-confined geometries. Hansen JS; Daivis PJ; Todd BD Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046322. PubMed ID: 19905451 [TBL] [Abstract][Full Text] [Related]
12. Effect of diffusion on impedance measurements in a hydrodynamic flow focusing sensor. Nasir M; Price DT; Shriver-Lake LC; Ligler F Lab Chip; 2010 Oct; 10(20):2787-95. PubMed ID: 20725680 [TBL] [Abstract][Full Text] [Related]
13. Investigation of hydrodynamic focusing in a microfluidic coulter counter device. Zhang M; Lian Y; Harnett C; Brehob E J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354 [TBL] [Abstract][Full Text] [Related]
14. Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits. Maiden MD; Lowman NK; Anderson DV; Schubert ME; Hoefer MA Phys Rev Lett; 2016 Apr; 116(17):174501. PubMed ID: 27176524 [TBL] [Abstract][Full Text] [Related]
15. Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Mishra M; Martin M; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066306. PubMed ID: 19256944 [TBL] [Abstract][Full Text] [Related]
16. Fingering instability and mixing of a blob in porous media. Pramanik S; Mishra M Phys Rev E; 2016 Oct; 94(4-1):043106. PubMed ID: 27841573 [TBL] [Abstract][Full Text] [Related]
17. Global stability of the focusing effect of fluid jet flows. Montanero JM; Rebollo-Muñoz N; Herrada MA; Gañán-Calvo AM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036309. PubMed ID: 21517589 [TBL] [Abstract][Full Text] [Related]