These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19113274)

  • 1. Is the scaling of supersonic turbulence universal?
    Schmidt W; Federrath C; Klessen R
    Phys Rev Lett; 2008 Nov; 101(19):194505. PubMed ID: 19113274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fronts in randomly advected and heterogeneous media and nonuniversality of Burgers turbulence: theory and numerics.
    Mayo JR; Kerstein AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056307. PubMed ID: 19113216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence.
    Shi Y; Ellero M; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036708. PubMed ID: 22587210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling and statistics in three-dimensional compressible turbulence.
    Wang J; Shi Y; Wang LP; Xiao Z; He XT; Chen S
    Phys Rev Lett; 2012 May; 108(21):214505. PubMed ID: 23003269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure function scaling in compressible super-Alfvénic MHD turbulence.
    Padoan P; Jimenez R; Nordlund A; Boldyrev S
    Phys Rev Lett; 2004 May; 92(19):191102. PubMed ID: 15169394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and internal energy transfer in implicit large-eddy simulations of forced compressible turbulence.
    Schmidt W; Grete P
    Phys Rev E; 2019 Oct; 100(4-1):043116. PubMed ID: 31771024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supersonic plasma turbulence in the laboratory.
    White TG; Oliver MT; Mabey P; Kühn-Kauffeldt M; Bott AFA; Döhl LNK; Bell AR; Bingham R; Clarke R; Foster J; Giacinti G; Graham P; Heathcote R; Koenig M; Kuramitsu Y; Lamb DQ; Meinecke J; Michel T; Miniati F; Notley M; Reville B; Ryu D; Sarkar S; Sakawa Y; Selwood MP; Squire J; Scott RHH; Tzeferacos P; Woolsey N; Schekochihin AA; Gregori G
    Nat Commun; 2019 Apr; 10(1):1758. PubMed ID: 30988285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function scaling of bounded two-dimensional turbulence.
    Kramer W; Keetels GH; Clercx HJ; van Heijst GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026310. PubMed ID: 21929093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vortex gas scaling regime of baroclinic turbulence.
    Gallet B; Ferrari R
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4491-4497. PubMed ID: 32071214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measures of intermittency in driven supersonic flows.
    Porter D; Pouquet A; Woodward P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026301. PubMed ID: 12241279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence.
    Wang J; Wan M; Chen S; Xie C; Chen S
    Phys Rev E; 2018 Apr; 97(4-1):043108. PubMed ID: 29758607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures in magnetohydrodynamic turbulence: detection and scaling.
    Uritsky VM; Pouquet A; Rosenberg D; Mininni PD; Donovan EF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056326. PubMed ID: 21230595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-redshift cosmic baryon fluid on large scales and She-Leveque universal scaling.
    He P; Liu J; Feng LL; Shu CW; Fang LZ
    Phys Rev Lett; 2006 Feb; 96(5):051302. PubMed ID: 16486921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressible turbulent mixing: Effects of Schmidt number.
    Ni Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053020. PubMed ID: 26066261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale velocity correlations in turbulence and Burgers turbulence: Fusion rules, Markov processes in scale, and multifractal predictions.
    Friedrich J; Margazoglou G; Biferale L; Grauer R
    Phys Rev E; 2018 Aug; 98(2-1):023104. PubMed ID: 30253572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elliptical tracers in two-dimensional, homogeneous, isotropic fluid turbulence: the statistics of alignment, rotation, and nematic order.
    Gupta A; Vincenzi D; Pandit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021001. PubMed ID: 25353409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical Equilibria of Large Scales in Dissipative Hydrodynamic Turbulence.
    Dallas V; Fauve S; Alexakis A
    Phys Rev Lett; 2015 Nov; 115(20):204501. PubMed ID: 26613445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipative structures in supersonic turbulence.
    Pan L; Padoan P; Kritsuk AG
    Phys Rev Lett; 2009 Jan; 102(3):034501. PubMed ID: 19257357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stationarity of linearly forced turbulence in finite domains.
    Gravanis E; Akylas E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046312. PubMed ID: 22181266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence.
    Sen A; Mininni PD; Rosenberg D; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036319. PubMed ID: 23031025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.