These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19113317)

  • 1. Reversal of the weak measurement of a quantum state in a superconducting phase qubit.
    Katz N; Neeley M; Ansmann M; Bialczak RC; Hofheinz M; Lucero E; O'Connell A; Wang H; Cleland AN; Martinis JM; Korotkov AN
    Phys Rev Lett; 2008 Nov; 101(20):200401. PubMed ID: 19113317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversing the weak quantum measurement for a photonic qubit.
    Kim YS; Cho YW; Ra YS; Kim YH
    Opt Express; 2009 Jul; 17(14):11978-85. PubMed ID: 19582113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent state evolution in a superconducting qubit from partial-collapse measurement.
    Katz N; Ansmann M; Bialczak RC; Lucero E; McDermott R; Neeley M; Steffen M; Weig EM; Cleland AN; Martinis JM; Korotkov AN
    Science; 2006 Jun; 312(5779):1498-500. PubMed ID: 16763142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Undoing a weak quantum measurement of a solid-state qubit.
    Korotkov AN; Jordan AN
    Phys Rev Lett; 2006 Oct; 97(16):166805. PubMed ID: 17155425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial-measurement backaction and nonclassical weak values in a superconducting circuit.
    Groen JP; Ristè D; Tornberg L; Cramer J; de Groot PC; Picot T; Johansson G; DiCarlo L
    Phys Rev Lett; 2013 Aug; 111(9):090506. PubMed ID: 24033014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of partial measurements on quantum resources and quantum Fisher information of a teleported state in a relativistic scenario.
    Jafarzadeh M; Rangani Jahromi H; Amniat-Talab M
    Proc Math Phys Eng Sci; 2020 Jul; 476(2239):20200378. PubMed ID: 32831617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback.
    Vijay R; Macklin C; Slichter DH; Weber SJ; Murch KW; Naik R; Korotkov AN; Siddiqi I
    Nature; 2012 Oct; 490(7418):77-80. PubMed ID: 23038468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heralded state preparation in a superconducting qubit.
    Johnson JE; Macklin C; Slichter DH; Vijay R; Weingarten EB; Clarke J; Siddiqi I
    Phys Rev Lett; 2012 Aug; 109(5):050506. PubMed ID: 23006157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback control of a solid-state qubit using high-fidelity projective measurement.
    Ristè D; Bultink CC; Lehnert KW; DiCarlo L
    Phys Rev Lett; 2012 Dec; 109(24):240502. PubMed ID: 23368293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the impact of intrinsic dissipation in a superconducting circuit by quantum error detection.
    Zhong YP; Wang ZL; Martinis JM; Cleland AN; Korotkov AN; Wang H
    Nat Commun; 2014; 5():3135. PubMed ID: 24457626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum back-action of an individual variable-strength measurement.
    Hatridge M; Shankar S; Mirrahimi M; Schackert F; Geerlings K; Brecht T; Sliwa KM; Abdo B; Frunzio L; Girvin SM; Schoelkopf RJ; Devoret MH
    Science; 2013 Jan; 339(6116):178-81. PubMed ID: 23307736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protecting quantum Fisher information of N-qubit GHZ state by weak measurement with flips against dissipation.
    Chen Y; Zou J; Long ZW; Shao B
    Sci Rep; 2017 Jul; 7(1):6160. PubMed ID: 28733578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dynamics of simultaneously measured non-commuting observables.
    Hacohen-Gourgy S; Martin LS; Flurin E; Ramasesh VV; Whaley KB; Siddiqi I
    Nature; 2016 Oct; 538(7626):491-494. PubMed ID: 27706145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State tomography of capacitively shunted phase qubits with high fidelity.
    Steffen M; Ansmann M; McDermott R; Katz N; Bialczak RC; Lucero E; Neeley M; Weig EM; Cleland AN; Martinis JM
    Phys Rev Lett; 2006 Aug; 97(5):050502. PubMed ID: 17026085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Rifling: Protecting a Qubit from Measurement Back Action.
    Szombati D; Gomez Frieiro A; Müller C; Jones T; Jerger M; Fedorov A
    Phys Rev Lett; 2020 Feb; 124(7):070401. PubMed ID: 32142306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Readout of superconducting flux qubit state with a Cooper pair box.
    Kim MD; Moon K
    J Phys Condens Matter; 2012 Jun; 24(22):225305. PubMed ID: 22585418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the entanglement of two superconducting qubits via state tomography.
    Steffen M; Ansmann M; Bialczak RC; Katz N; Lucero E; McDermott R; Neeley M; Weig EM; Cleland AN; Martinis JM
    Science; 2006 Sep; 313(5792):1423-5. PubMed ID: 16960003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconducting qubit with Purcell protection and tunable coupling.
    Gambetta JM; Houck AA; Blais A
    Phys Rev Lett; 2011 Jan; 106(3):030502. PubMed ID: 21405262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initialization by measurement of a superconducting quantum bit circuit.
    Ristè D; van Leeuwen JG; Ku HS; Lehnert KW; DiCarlo L
    Phys Rev Lett; 2012 Aug; 109(5):050507. PubMed ID: 23006158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Qubit Measurement with a Nonreciprocal Microwave Amplifier.
    Lecocq F; Ranzani L; Peterson GA; Cicak K; Jin XY; Simmonds RW; Teufel JD; Aumentado J
    Phys Rev Lett; 2021 Jan; 126(2):020502. PubMed ID: 33512236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.