These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19113325)

  • 1. Heat conductivity from molecular chaos hypothesis in locally confined billiard systems.
    Gilbert T; Lefevere R
    Phys Rev Lett; 2008 Nov; 101(20):200601. PubMed ID: 19113325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-particle circular billiards versus randomly perturbed one-particle circular billiards.
    Ranković S; Porter MA
    Chaos; 2013 Mar; 23(1):013123. PubMed ID: 23556960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical billiards for atoms.
    Milner V; Hanssen JL; Campbell WC; Raizen MG
    Phys Rev Lett; 2001 Feb; 86(8):1514-7. PubMed ID: 11290181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polygonal billiards and transport: diffusion and heat conduction.
    Alonso D; Ruiz A; De Vega I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066131. PubMed ID: 12513371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of noise in open chaotic billiards.
    Altmann EG; Leitão JC; Lopes JV
    Chaos; 2012 Jun; 22(2):026114. PubMed ID: 22757573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaking billiards.
    Nagler J; Krieger M; Linke M; Schönke J; Wiersig J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical versus mathematical billiards: From regular dynamics to chaos and back.
    Bunimovich LA
    Chaos; 2019 Sep; 29(9):091105. PubMed ID: 31575128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat conduction in one-dimensional systems with hard-point interparticle interactions.
    Savin AV; Tsironis GP; Zolotaryuk AV
    Phys Rev Lett; 2002 Apr; 88(15):154301. PubMed ID: 11955198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditions of stochasticity of two-dimensional billiards.
    Bunimovich LA
    Chaos; 1991 Aug; 1(2):187-193. PubMed ID: 12779912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat conduction in a chain of dissociating particles: Effect of dimensionality.
    Zolotarevskiy V; Savin AV; Gendelman OV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032127. PubMed ID: 25871074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density.
    Attard P
    J Chem Phys; 2006 Jun; 124(22):224103. PubMed ID: 16784259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-particle and few-particle billiards.
    Lansel S; Porter MA; Bunimovich LA
    Chaos; 2006 Mar; 16(1):013129. PubMed ID: 16599760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium inertial dynamics of colloidal systems.
    Marini Bettolo Marconi U; Tarazona P
    J Chem Phys; 2006 Apr; 124(16):164901. PubMed ID: 16674164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical properties of the soft-wall elliptical billiard.
    Kroetz T; Oliveira HA; Portela JS; Viana RL
    Phys Rev E; 2016 Aug; 94(2-1):022218. PubMed ID: 27627309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossover from regular to irregular behavior in current flow through open billiards.
    Berggren KF; Sadreev AF; Starikov AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-stage approach to relaxation in billiard systems of locally confined hard spheres.
    Gaspard P; Gilbert T
    Chaos; 2012 Jun; 22(2):026117. PubMed ID: 22757576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Entropy of a One-Dimensional Gas with and without Mixing Using Sinai Billiard.
    Sobol A; Güntert P; Riek R
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence of Hamiltonian systems to billiards.
    Collas P; Klein D; Schwebler HP
    Chaos; 1998 Jun; 8(2):466-474. PubMed ID: 12779750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft wall effects on interacting particles in billiards.
    Oliveira HA; Manchein C; Beims MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046208. PubMed ID: 18999509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric circuit networks equivalent to chaotic quantum billiards.
    Bulgakov EN; Maksimov DN; Sadreev AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046205. PubMed ID: 15903768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.