These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Polygonal billiards and transport: diffusion and heat conduction. Alonso D; Ruiz A; De Vega I Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066131. PubMed ID: 12513371 [TBL] [Abstract][Full Text] [Related]
5. Effect of noise in open chaotic billiards. Altmann EG; Leitão JC; Lopes JV Chaos; 2012 Jun; 22(2):026114. PubMed ID: 22757573 [TBL] [Abstract][Full Text] [Related]
6. Leaking billiards. Nagler J; Krieger M; Linke M; Schönke J; Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975 [TBL] [Abstract][Full Text] [Related]
7. Physical versus mathematical billiards: From regular dynamics to chaos and back. Bunimovich LA Chaos; 2019 Sep; 29(9):091105. PubMed ID: 31575128 [TBL] [Abstract][Full Text] [Related]
8. Heat conduction in one-dimensional systems with hard-point interparticle interactions. Savin AV; Tsironis GP; Zolotaryuk AV Phys Rev Lett; 2002 Apr; 88(15):154301. PubMed ID: 11955198 [TBL] [Abstract][Full Text] [Related]
9. Conditions of stochasticity of two-dimensional billiards. Bunimovich LA Chaos; 1991 Aug; 1(2):187-193. PubMed ID: 12779912 [TBL] [Abstract][Full Text] [Related]
10. Heat conduction in a chain of dissociating particles: Effect of dimensionality. Zolotarevskiy V; Savin AV; Gendelman OV Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032127. PubMed ID: 25871074 [TBL] [Abstract][Full Text] [Related]
11. Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density. Attard P J Chem Phys; 2006 Jun; 124(22):224103. PubMed ID: 16784259 [TBL] [Abstract][Full Text] [Related]
15. Crossover from regular to irregular behavior in current flow through open billiards. Berggren KF; Sadreev AF; Starikov AA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472 [TBL] [Abstract][Full Text] [Related]
16. A two-stage approach to relaxation in billiard systems of locally confined hard spheres. Gaspard P; Gilbert T Chaos; 2012 Jun; 22(2):026117. PubMed ID: 22757576 [TBL] [Abstract][Full Text] [Related]
17. On the Entropy of a One-Dimensional Gas with and without Mixing Using Sinai Billiard. Sobol A; Güntert P; Riek R Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573813 [TBL] [Abstract][Full Text] [Related]
18. Convergence of Hamiltonian systems to billiards. Collas P; Klein D; Schwebler HP Chaos; 1998 Jun; 8(2):466-474. PubMed ID: 12779750 [TBL] [Abstract][Full Text] [Related]
19. Soft wall effects on interacting particles in billiards. Oliveira HA; Manchein C; Beims MW Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046208. PubMed ID: 18999509 [TBL] [Abstract][Full Text] [Related]
20. Electric circuit networks equivalent to chaotic quantum billiards. Bulgakov EN; Maksimov DN; Sadreev AF Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046205. PubMed ID: 15903768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]