These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19113368)

  • 1. Inherent stochasticity of superconductor-resistor switching behavior in nanowires.
    Shah N; Pekker D; Goldbart PM
    Phys Rev Lett; 2008 Nov; 101(20):207001. PubMed ID: 19113368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally induced local failures in quasi-one-dimensional systems: collapse in carbon nanotubes, necking in nanowires, and opening of bubbles in DNA.
    Nisoli C; Abraham D; Lookman T; Saxena A
    Phys Rev Lett; 2010 Jan; 104(2):025503. PubMed ID: 20366608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching currents limited by single phase slips in one-dimensional superconducting Al nanowires.
    Li P; Wu PM; Bomze Y; Borzenets IV; Finkelstein G; Chang AM
    Phys Rev Lett; 2011 Sep; 107(13):137004. PubMed ID: 22026893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting nanowires fabricated using molecular templates.
    Bezryadin A; Goldbart PM
    Adv Mater; 2010 Mar; 22(10):1111-21. PubMed ID: 20401935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of conductive and photoluminescent DNA-templated polyindole nanowires.
    Hassanien R; Al-Hinai M; Farha Al-Said SA; Little R; Siller L; Wright NG; Houlton A; Horrocks BR
    ACS Nano; 2010 Apr; 4(4):2149-59. PubMed ID: 20218665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helicoidal fields and spin polarized currents in carbon nanotube-DNA hybrids.
    Diniz GS; Latgé A; Ulloa SE
    Phys Rev Lett; 2012 Mar; 108(12):126601. PubMed ID: 22540607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.
    Constantino NGN; Anwar MS; Kennedy OW; Dang M; Warburton PA; Fenton JC
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29914174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eliminating Quantum Phase Slips in Superconducting Nanowires.
    Voss JN; Schön Y; Wildermuth M; Dorer D; Cole JH; Rotzinger H; Ustinov AV
    ACS Nano; 2021 Mar; 15(3):4108-4114. PubMed ID: 33596045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally driven spin transport through a transverse-biased zigzag-edge graphene nanoribbon.
    Zhao Z; Zhai X; Jin G
    J Phys Condens Matter; 2012 Mar; 24(9):095302. PubMed ID: 22316566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of switching between metastable superconducting states in δ-MoN nanowires.
    Buh J; Kabanov V; Baranov V; Mrzel A; Kovič A; Mihailovic D
    Nat Commun; 2015 Dec; 6():10250. PubMed ID: 26687762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Giant" enhancement of the upper critical field and fluctuations above the bulk Tc in superconducting ultrathin lead nanowire arrays.
    He M; Wong CH; Tse PL; Zheng Y; Zhang H; Lam FL; Sheng P; Hu X; Lortz R
    ACS Nano; 2013 May; 7(5):4187-93. PubMed ID: 23565799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-level quantization and single-photon control of phase slips in YBa
    Lyatti M; Wolff MA; Gundareva I; Kruth M; Ferrari S; Dunin-Borkowski RE; Schuck C
    Nat Commun; 2020 Feb; 11(1):763. PubMed ID: 32034143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching behavior of carbon chains bridging graphene nanoribbons: effects of uniaxial strain.
    Akdim B; Pachter R
    ACS Nano; 2011 Mar; 5(3):1769-74. PubMed ID: 21344875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. I-V characteristics of short superconducting nanowires with different bias and shunt: a dynamic approach.
    Lin SZ; Bulaevskii LN
    J Phys Condens Matter; 2014 Apr; 26(15):155703. PubMed ID: 24674877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection.
    Delacour C; Pannetier B; Villegier JC; Bouchiat V
    Nano Lett; 2012 Jul; 12(7):3501-6. PubMed ID: 22694480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the electrical conduction in DNA nanowires: charge transfer and lattice fluctuation theories.
    Behnia S; Fathizadeh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022719. PubMed ID: 25768543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum suppression of superconductivity in ultrathin nanowires.
    Bezryadin A; Lau CN; Tinkham M
    Nature; 2000 Apr; 404(6781):971-4. PubMed ID: 10801120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts.
    Murphy A; Semenov A; Korneev A; Korneeva Y; Gol'tsman G; Bezryadin A
    Sci Rep; 2015 May; 5():10174. PubMed ID: 25988591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates.
    Ong WL; Zhang C; Ho GW
    Nanoscale; 2011 Oct; 3(10):4206-14. PubMed ID: 21858371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.