These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 19113368)
21. Numerical investigations into mechanical properties of hexagonal silicon carbon nanowires and nanotubes. Zheng B; Lowther JE Nanoscale; 2010 Sep; 2(9):1733-9. PubMed ID: 20820704 [TBL] [Abstract][Full Text] [Related]
22. Ionic liquids for soft functional materials with carbon nanotubes. Fukushima T; Aida T Chemistry; 2007; 13(18):5048-58. PubMed ID: 17516613 [TBL] [Abstract][Full Text] [Related]
23. Role of kinetic inductance in transport properties of shunted superconducting nanowires. Lin SZ; Roy D J Phys Condens Matter; 2013 Aug; 25(32):325701. PubMed ID: 23838641 [TBL] [Abstract][Full Text] [Related]
24. Production of semiconducting gold-DNA nanowires by application of DC bias. Joshi RK; West L; Kumar A; Joshi N; Alwarappan S; Kumar A Nanotechnology; 2010 May; 21(18):185604. PubMed ID: 20388979 [TBL] [Abstract][Full Text] [Related]
25. Quantum phase slips in superconducting nanowires. Lau CN; Markovic N; Bockrath M; Bezryadin A; Tinkham M Phys Rev Lett; 2001 Nov; 87(21):217003. PubMed ID: 11736371 [TBL] [Abstract][Full Text] [Related]
26. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. Kim WY; Kim KS J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178 [TBL] [Abstract][Full Text] [Related]
28. On the temperature dependence of ballistic Coulomb drag in nanowires. Muradov MI; Gurevich VL J Phys Condens Matter; 2012 Apr; 24(13):135304. PubMed ID: 22406816 [TBL] [Abstract][Full Text] [Related]
29. Synthesis and application of DNA-CdS nanowires within a minute using microwave irradiation. Kundu S; Lee H; Liang H Inorg Chem; 2009 Jan; 48(1):121-7. PubMed ID: 19035762 [TBL] [Abstract][Full Text] [Related]
30. One-dimensional heterostructures of single-walled carbon nanotubes and CdSe nanowires. Fu N; Li Z; Myalitsin A; Scolari M; Weitz RT; Burghard M; Mews A Small; 2010 Feb; 6(3):376-80. PubMed ID: 20025078 [No Abstract] [Full Text] [Related]
31. Electric-Field-Driven Resistive Switching in the Dissipative Hubbard Model. Li J; Aron C; Kotliar G; Han JE Phys Rev Lett; 2015 Jun; 114(22):226403. PubMed ID: 26196634 [TBL] [Abstract][Full Text] [Related]
32. High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. Miki S; Yamashita T; Terai H; Wang Z Opt Express; 2013 Apr; 21(8):10208-14. PubMed ID: 23609728 [TBL] [Abstract][Full Text] [Related]
33. Size dependent breakdown of superconductivity in ultranarrow nanowires. Zgirski M; Riikonen KP; Touboltsev V; Arutyunov K Nano Lett; 2005 Jun; 5(6):1029-33. PubMed ID: 15943437 [TBL] [Abstract][Full Text] [Related]
34. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries. Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436 [TBL] [Abstract][Full Text] [Related]
35. Nonvolatile resistive switching in single crystalline ZnO nanowires. Yang Y; Zhang X; Gao M; Zeng F; Zhou W; Xie S; Pan F Nanoscale; 2011 Apr; 3(4):1917-21. PubMed ID: 21394361 [TBL] [Abstract][Full Text] [Related]
36. Unique structural and transport properties of molybdenum chalcohalide nanowires. Popov I; Yang T; Berber S; Seifert G; Tománek D Phys Rev Lett; 2007 Aug; 99(8):085503. PubMed ID: 17930955 [TBL] [Abstract][Full Text] [Related]
37. Role of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes. Maji B; Samanta SK; Bhattacharya S Nanoscale; 2014 Apr; 6(7):3721-30. PubMed ID: 24569668 [TBL] [Abstract][Full Text] [Related]
38. Statistics of localized phase slips in tunable width planar point contacts. Baumans XD; Zharinov VS; Raymenants E; Blanco Alvarez S; Scheerder JE; Brisbois J; Massarotti D; Caruso R; Tafuri F; Janssens E; Moshchalkov VV; Van de Vondel J; Silhanek AV Sci Rep; 2017 Mar; 7():44569. PubMed ID: 28300182 [TBL] [Abstract][Full Text] [Related]
39. Precise in situ tuning of the critical current of a superconducting nanowire using high bias voltage pulses. Aref T; Bezryadin A Nanotechnology; 2011 Sep; 22(39):395302. PubMed ID: 21891860 [TBL] [Abstract][Full Text] [Related]
40. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes. Zhang L; Shi E; Ji C; Li Z; Li P; Shang Y; Li Y; Wei J; Wang K; Zhu H; Wu D; Cao A Nanoscale; 2012 Aug; 4(16):4954-9. PubMed ID: 22806611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]