These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19113456)

  • 1. Colloidal ordering on a 2D quasicrystalline substrate.
    Schmiedeberg M; Stark H
    Phys Rev Lett; 2008 Nov; 101(21):218302. PubMed ID: 19113456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of two-dimensional decagonal colloidal quasicrystals.
    Martinsons M; Schmiedeberg M
    J Phys Condens Matter; 2018 Jun; 30(25):255403. PubMed ID: 29762124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase ordering of hard needles on a quasicrystalline substrate.
    Kählitz P; Stark H
    J Chem Phys; 2012 May; 136(17):174705. PubMed ID: 22583263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering and mobility of hard rods in a quasicrystalline substrate potential.
    Kählitz P; Schoen M; Stark H
    J Chem Phys; 2012 Dec; 137(22):224705. PubMed ID: 23249024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What phasons look like: particle trajectories in a quasicrystalline potential.
    Kromer JA; Schmiedeberg M; Roth J; Stark H
    Phys Rev Lett; 2012 May; 108(21):218301. PubMed ID: 23003308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archimedean-like colloidal tilings on substrates with decagonal and tetradecagonal symmetry.
    Schmiedeberg M; Mikhael J; Rausch S; Roth J; Helden L; Bechinger C; Stark H
    Eur Phys J E Soft Matter; 2010 May; 32(1):25-34. PubMed ID: 20524030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-chain Monte Carlo simulations of the liquid to solid transition of two-dimensional decagonal colloidal quasicrystals.
    Martinsons M; Hielscher J; Kapfer SC; Schmiedeberg M
    J Phys Condens Matter; 2019 Nov; 31(47):475103. PubMed ID: 31342938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing light-induced colloidal quasicrystals with different rotational symmetries.
    Schmiedeberg M; Stark H
    J Phys Condens Matter; 2012 Jul; 24(28):284101. PubMed ID: 22740599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phason-induced dynamics of colloidal particles on quasicrystalline substrates.
    A Kromer J; Schmiedeberg M; Roth J; Stark H
    Eur Phys J E Soft Matter; 2013 Mar; 36(3):25. PubMed ID: 23512714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective substrate potentials with quasicrystalline symmetry depend on the size of the adsorbed particles.
    Rühle F; Sandbrink M; Stark H; Schmiedeberg M
    Eur Phys J E Soft Matter; 2015 Jun; 38(6):54. PubMed ID: 26087915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of the decagonal quasicrystalline order in simple three-dimensional systems.
    Ryltsev R; Klumov B; Chtchelkatchev N
    Soft Matter; 2015 Sep; 11(35):6991-8. PubMed ID: 26234538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezing and melting of a colloidal adsorbate on a 1D quasicrystalline substrate.
    Schmiedeberg M; Roth J; Stark H
    Phys Rev Lett; 2006 Oct; 97(15):158304. PubMed ID: 17155368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional quasicrystals of decagonal order in one-component monolayer films.
    Patrykiejew A; Sokołowski S
    Phys Rev Lett; 2007 Oct; 99(15):156101. PubMed ID: 17995189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archimedean-like tiling on decagonal quasicrystalline surfaces.
    Mikhael J; Roth J; Helden L; Bechinger C
    Nature; 2008 Jul; 454(7203):501-4. PubMed ID: 18650921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical ordering and directional locking for particles moving over quasicrystalline substrates.
    Reichhardt C; Olson Reichhardt CJ
    Phys Rev Lett; 2011 Feb; 106(6):060603. PubMed ID: 21405453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of Two-Dimensional Aluminum Alloys from Decagonal Quasicrystals.
    Yadav TP; Woellner CF; Sharifi T; Sinha SK; Qu LL; Apte A; Mukhopadhyay NK; Srivastava ON; Vajtai R; Galvão DS; Tiwary CS; Ajayan PM
    ACS Nano; 2020 Jun; 14(6):7435-7443. PubMed ID: 32469491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of phonon and phason modes in intrinsic colloidal quasicrystals by reconstructing their structure in hyperspace.
    Hielscher J; Martinsons M; Schmiedeberg M; Kapfer SC
    J Phys Condens Matter; 2017 Mar; 29(9):094002. PubMed ID: 28008870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charged colloids and proteins at an air-water interface: the effect of dielectric substrates on interaction and phase behavior.
    Mbamala EC; von Grünberg HH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031608. PubMed ID: 12689081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental observation of directional locking and dynamical ordering of colloidal monolayers driven across quasiperiodic substrates.
    Bohlein T; Bechinger C
    Phys Rev Lett; 2012 Aug; 109(5):058301. PubMed ID: 23006211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent Quasicrystalline Symmetry in Light-Induced Quantum Phase Transitions.
    Mivehvar F; Ritsch H; Piazza F
    Phys Rev Lett; 2019 Nov; 123(21):210604. PubMed ID: 31809187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.