These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19113726)

  • 21. An atomic scale study of surface termination and digital alloy growth in InGaAs/AlAsSb multi-quantum wells.
    Mauger SJ; Bozkurt M; Koenraad PM; Zhao Y; Folliot H; Bertru N
    J Phys Condens Matter; 2016 Jul; 28(28):284002. PubMed ID: 27228395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy.
    Morales-Cortés H; Mejía-García C; Méndez-García VH; Vázquez-Cortés D; Rojas-Ramírez JS; Contreras-Guerrero R; Ramírez-López M; Martínez-Velis I; López-López M
    Nanotechnology; 2010 Apr; 21(13):134012. PubMed ID: 20208110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy.
    Mano T; Abbarchi M; Kuroda T; Mastrandrea CA; Vinattieri A; Sanguinetti S; Sakoda K; Gurioli M
    Nanotechnology; 2009 Sep; 20(39):395601. PubMed ID: 19724114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropic scattering of elongated GaSb/GaAs quantum dots embedded near two-dimensional electron gas.
    Li G; Jiang C; Sakaki H
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10792-5. PubMed ID: 22408997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stacked GaAs quantum dots fabricated by refilling of self-organized nanoholes: optical properties and post-growth annealing.
    Polojärvi V; Schramm A; Guina M; Stemmann A; Heyn C
    Nanotechnology; 2011 Mar; 22(10):105603. PubMed ID: 21289401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dense lying self-organized GaAsSb quantum dots on GaAs for efficient lasers.
    Loeber TH; Hoffmann D; Fouckhardt H
    Beilstein J Nanotechnol; 2011; 2():333-8. PubMed ID: 21977447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strain relief and growth optimization of GaSb on GaP by molecular beam epitaxy.
    Wang Y; Ruterana P; Chen J; Desplanque L; El Kazzi S; Wallart X
    J Phys Condens Matter; 2012 Aug; 24(33):335802. PubMed ID: 22836299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Type II GaSb quantum ring solar cells under concentrated sunlight.
    Tsai CP; Hsu SC; Lin SY; Chang CW; Tu LW; Chen KC; Lay TS; Lin CC
    Opt Express; 2014 Mar; 22 Suppl 2():A359-64. PubMed ID: 24922245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Type II GaSb quantum ring solar cells under concentrated sunlight.
    Tsai CP; Hsu SC; Lin SY; Chang CW; Tu LW; Chen KC; Lay TS; Lin CC
    Opt Express; 2014 Mar; 22(5):A359-64. PubMed ID: 24800292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. InAs/GaAs nanostructures grown on patterned Si(001) by molecular beam epitaxy.
    He J; Yadavalli K; Zhao Z; Li N; Hao Z; Wang KL; Jacob AP
    Nanotechnology; 2008 Nov; 19(45):455607. PubMed ID: 21832784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolution of self-assembled InAs/GaAs(001) quantum dots grown by growth-interrupted molecular beam epitaxy.
    Balzarotti A
    Nanotechnology; 2008 Dec; 19(50):505701. PubMed ID: 19942778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural characterization of InAs quantum dot chains grown by molecular beam epitaxy on nanoimprint lithography patterned GaAs(100).
    Hakkarainen TV; Tommila J; Schramm A; Tukiainen A; Ahorinta R; Dumitrescu M; Guina M
    Nanotechnology; 2011 Jul; 22(29):295604. PubMed ID: 21680961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin of quantum ring formation during droplet epitaxy.
    Zhou ZY; Zheng CX; Tang WX; Tersoff J; Jesson DE
    Phys Rev Lett; 2013 Jul; 111(3):036102. PubMed ID: 23909340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron tomography on nanopores embedded in epitaxial GaSb thin films.
    Niehle M; Trampert A
    Micron; 2015 Jun; 73():54-62. PubMed ID: 25900544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conductive atomic force microscopy studies on the transformation of GeSi quantum dots to quantum rings.
    Zhang SL; Xue F; Wu R; Cui J; Jiang ZM; Yang XJ
    Nanotechnology; 2009 Apr; 20(13):135703. PubMed ID: 19420512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transformation of InAs islands to quantum ring structures by metalorganic vapor phase epitaxy.
    Aierken A; Hakkarainen T; Riikonen J; Sopanen M
    Nanotechnology; 2008 Jun; 19(24):245304. PubMed ID: 21825809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of a Thin Continuous GaSb Film on Si(001) by Solid Phase Epitaxy.
    Chusovitin E; Dotsenko S; Chusovitina S; Goroshko D; Gutakovskii A; Subbotin E; Galkin K; Galkin N
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30487412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of electron irradiation on the electronic transport mechanisms during the conductive AFM imaging of InAs/GaAs quantum dots capped with a thin GaAs layer.
    Troyon M; Smaali K
    Nanotechnology; 2008 Jun; 19(25):255709. PubMed ID: 21828669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.
    Linares-García G; Meza-Montes L; Stinaff E; Alsolamy SM; Ware ME; Mazur YI; Wang ZM; Lee J; Salamo GJ
    Nanoscale Res Lett; 2016 Dec; 11(1):309. PubMed ID: 27342603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1.1-μm InAs/GaAs quantum-dot light-emitting transistors grown by molecular beam epitaxy.
    Wu CH; Chen HA; Lin SY; Wu CH
    Opt Lett; 2015 Aug; 40(16):3747-9. PubMed ID: 26274650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.