These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19113728)

  • 1. Scattering of plasmons at the intersection of two metallic nanotubes: implications for tunneling.
    Mkhitaryan VV; Fang Y; Gerton JM; Mishchenko EG; Raikh ME
    Phys Rev Lett; 2008 Dec; 101(25):256401. PubMed ID: 19113728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon.
    Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes.
    Wang S; Zhao S; Shi Z; Wu F; Zhao Z; Jiang L; Watanabe K; Taniguchi T; Zettl A; Zhou C; Wang F
    Nat Mater; 2020 Sep; 19(9):986-991. PubMed ID: 32231241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes.
    Gao B; Komnik A; Egger R; Glattli DC; Bachtold A
    Phys Rev Lett; 2004 May; 92(21):216804. PubMed ID: 15245306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intersubband edge singularity in metallic nanotubes.
    Mishchenko EG; Starykh OA
    Phys Rev Lett; 2011 Sep; 107(11):116804. PubMed ID: 22026693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge scattering of surface plasmons excited by scanning tunneling microscopy.
    Zhang Y; Boer-Duchemin E; Wang T; Rogez B; Comtet G; Le Moal E; Dujardin G; Hohenau A; Gruber C; Krenn JR
    Opt Express; 2013 Jun; 21(12):13938-48. PubMed ID: 23787583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of Electron Tunneling and Plasmon Propagation in a Luttinger Liquid.
    Zhao S; Wang S; Wu F; Shi W; Utama IB; Lyu T; Jiang L; Su Y; Wang S; Watanabe K; Taniguchi T; Zettl A; Zhang X; Zhou C; Wang F
    Phys Rev Lett; 2018 Jul; 121(4):047702. PubMed ID: 30095956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental optical processes in armchair carbon nanotubes.
    Hároz EH; Duque JG; Tu X; Zheng M; Hight Walker AR; Hauge RH; Doorn SK; Kono J
    Nanoscale; 2013 Feb; 5(4):1411-39. PubMed ID: 23340668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Luttinger-liquid plasmons in carbon nanotubes by chemical doping.
    Tian X; Gu Q; Duan J; Chen R; Liu H; Hou Y; Chen J
    Nanoscale; 2018 Apr; 10(14):6288-6293. PubMed ID: 29577139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering.
    Jorio A; Saito R; Hafner JH; Lieber CM; Hunter M; McClure T; Dresselhaus G; Dresselhaus MS
    Phys Rev Lett; 2001 Feb; 86(6):1118-21. PubMed ID: 11178024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of tunneling density of states at a junction of three Luttinger liquid wires.
    Agarwal A; Das S; Rao S; Sen D
    Phys Rev Lett; 2009 Jul; 103(2):026401. PubMed ID: 19659223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent transport of nanowire surface plasmons coupled to quantum dots.
    Chen W; Chen GY; Chen YN
    Opt Express; 2010 May; 18(10):10360-8. PubMed ID: 20588891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from a Tomonaga-Luttinger liquid to a fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes.
    Rauf H; Pichler T; Knupfer M; Fink J; Kataura H
    Phys Rev Lett; 2004 Aug; 93(9):096805. PubMed ID: 15447126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant piezoresistivity in aligned carbon nanotube nanocomposite: account for nanotube structural distortion at crossed tunnel junctions.
    Gong S; Zhu ZH
    Nanoscale; 2015 Jan; 7(4):1339-48. PubMed ID: 25492244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles calculations of carbon nanotubes adsorbed on Si(001).
    Orellana W; Miwa RH; Fazzio A
    Phys Rev Lett; 2003 Oct; 91(16):166802. PubMed ID: 14611426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering.
    Sfeir MY; Wang F; Huang L; Chuang CC; Hone J; O'brien SP; Heinz TF; Brus LE
    Science; 2004 Nov; 306(5701):1540-3. PubMed ID: 15514117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zero-bias anomaly in disordered wires.
    Mishchenko EG; Andreev AV; Glazman LI
    Phys Rev Lett; 2001 Dec; 87(24):246801. PubMed ID: 11736527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy phonon branches of an individual metallic carbon nanotube.
    Maultzsch J; Reich S; Schlecht U; Thomsen C
    Phys Rev Lett; 2003 Aug; 91(8):087402. PubMed ID: 14525277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.