BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 19113881)

  • 1. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites.
    Siqueira G; Bras J; Dufresne A
    Biomacromolecules; 2009 Feb; 10(2):425-32. PubMed ID: 19113881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals.
    Siqueira G; Bras J; Follain N; Belbekhouche S; Marais S; Dufresne A
    Carbohydr Polym; 2013 Jan; 91(2):711-7. PubMed ID: 23121968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites.
    Goffin AL; Raquez JM; Duquesne E; Siqueira G; Habibi Y; Dufresne A; Dubois P
    Biomacromolecules; 2011 Jul; 12(7):2456-65. PubMed ID: 21623629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review.
    Lavoine N; Desloges I; Dufresne A; Bras J
    Carbohydr Polym; 2012 Oct; 90(2):735-64. PubMed ID: 22839998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite.
    Ifuku S; Yano H
    Int J Biol Macromol; 2015 Mar; 74():428-32. PubMed ID: 25575951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites--influence of the graft length on the mechanical properties.
    Lönnberg H; Larsson K; Lindström T; Hult A; Malmström E
    ACS Appl Mater Interfaces; 2011 May; 3(5):1426-33. PubMed ID: 21473594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate.
    Siqueira G; Bras J; Dufresne A
    Langmuir; 2010 Jan; 26(1):402-11. PubMed ID: 19921797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties.
    Haafiz MK; Hassan A; Khalil HP; Fazita MR; Islam MS; Inuwa IM; Marliana MM; Hussin MH
    Int J Biol Macromol; 2016 Apr; 85():370-8. PubMed ID: 26772914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites.
    Arjmandi R; Hassan A; Haafiz MK; Zakaria Z; Islam MS
    Int J Biol Macromol; 2016 Jan; 82():998-1010. PubMed ID: 26592699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites.
    George J; Ramana KV; Bawa AS; Siddaramaiah
    Int J Biol Macromol; 2011 Jan; 48(1):50-7. PubMed ID: 20920524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of surface modified cellulose microfibrils on the improved mechanical properties of poly (lactic acid).
    Johari AP; Kurmvanshi SK; Mohanty S; Nayak SK
    Int J Biol Macromol; 2016 Mar; 84():329-39. PubMed ID: 26708431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.
    Lu Y; Cueva MC; Lara-Curzio E; Ozcan S
    Carbohydr Polym; 2015 Oct; 131():208-17. PubMed ID: 26256177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of processing on the properties of chitosan/cellulose nanocrystal films.
    Celebi H; Kurt A
    Carbohydr Polym; 2015 Nov; 133():284-93. PubMed ID: 26344283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose.
    Tingaut P; Zimmermann T; Lopez-Suevos F
    Biomacromolecules; 2010 Feb; 11(2):454-64. PubMed ID: 20025270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane.
    Cao X; Dong H; Li CM
    Biomacromolecules; 2007 Mar; 8(3):899-904. PubMed ID: 17315923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals.
    Habibi Y; Dufresne A
    Biomacromolecules; 2008 Jul; 9(7):1974-80. PubMed ID: 18510360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites.
    Mariano M; El Kissi N; Dufresne A
    Carbohydr Polym; 2016 Feb; 137():174-183. PubMed ID: 26686118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements.
    Ashori A; Jonoobi M; Ayrilmis N; Shahreki A; Fashapoyeh MA
    Int J Biol Macromol; 2019 Sep; 136():1119-1124. PubMed ID: 31252006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.