BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 19113886)

  • 1. Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals.
    Sun Q; Nelson H; Ly T; Stoltz BM; Julian RR
    J Proteome Res; 2009 Feb; 8(2):958-66. PubMed ID: 19113886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes.
    Shin JW; Lee YH; Hwang S; Lee SW
    J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radical conversion and migration in electron capture dissociation.
    Moore BN; Ly T; Julian RR
    J Am Chem Soc; 2011 May; 133(18):6997-7006. PubMed ID: 21495634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide cation-radicals. A computational study of the competition between peptide N-Calpha bond cleavage and loss of the side chain in the [GlyPhe-NH2 + 2H]+. cation-radical.
    Turecek F; Syrstad EA; Seymour JL; Chen X; Yao C
    J Mass Spectrom; 2003 Oct; 38(10):1093-104. PubMed ID: 14595859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Side-chain losses in electron capture dissociation to improve peptide identification.
    Savitski MM; Nielsen ML; Zubarev RA
    Anal Chem; 2007 Mar; 79(6):2296-302. PubMed ID: 17274597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile identification of phosphorylation sites in peptides by radical directed dissociation.
    Diedrich JK; Julian RR
    Anal Chem; 2011 Sep; 83(17):6818-26. PubMed ID: 21786820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of side chains on competing pathways for beta-scission reactions of peptide-backbone alkoxyl radicals.
    Wood GP; Easton CJ; Rauk A; Davies MJ; Radom L
    J Phys Chem A; 2006 Aug; 110(34):10316-23. PubMed ID: 16928124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-remote fragmentation of odd-electron peptide ions.
    Laskin J; Yang Z; Lam C; Chu IK
    Anal Chem; 2007 Sep; 79(17):6607-14. PubMed ID: 17676923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide derivatization as a strategy to form fixed-charge peptide radicals.
    Karnezis A; Barlow CK; O'Hair RA; McFadyen WD
    Rapid Commun Mass Spectrom; 2006; 20(19):2865-70. PubMed ID: 16941727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical cations of amino acids and peptides: structures and stabilities.
    Hopkinson AC
    Mass Spectrom Rev; 2009; 28(4):655-71. PubMed ID: 19391098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron capture dissociation initiates a free radical reaction cascade.
    Leymarie N; Costello CE; O'Connor PB
    J Am Chem Soc; 2003 Jul; 125(29):8949-58. PubMed ID: 12862492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific radical directed dissociation of peptides at phosphorylated residues.
    Diedrich JK; Julian RR
    J Am Chem Soc; 2008 Sep; 130(37):12212-3. PubMed ID: 18710237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radical-driven peptide backbone dissociation tandem mass spectrometry.
    Oh HB; Moon B
    Mass Spectrom Rev; 2015; 34(2):116-32. PubMed ID: 24863492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmentation of singly, doubly, and triply charged hydrogen deficient peptide radical cations in infrared multiphoton dissociation and electron induced dissociation.
    Kalli A; Hess S
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):244-63. PubMed ID: 22101468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision-induced fragmentations of the (M-H)- parent anions of underivatized peptides: an aid to structure determination and some unusual negative ion cleavages.
    Bowie JH; Brinkworth CS; Dua S
    Mass Spectrom Rev; 2002; 21(2):87-107. PubMed ID: 12373746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The arginine anomaly: arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations.
    Chen X; Turecek F
    J Am Chem Soc; 2006 Sep; 128(38):12520-30. PubMed ID: 16984203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconjugates for tunable peptide fragmentation: free radical initiated peptide sequencing (FRIPS).
    Hodyss R; Cox HA; Beauchamp JL
    J Am Chem Soc; 2005 Sep; 127(36):12436-7. PubMed ID: 16144360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation processes of hydrogen-deficient peptide radicals in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.
    Asakawa D; Takayama M
    J Phys Chem B; 2012 Apr; 116(13):4016-23. PubMed ID: 22372616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage.
    Davies MJ
    Arch Biochem Biophys; 1996 Dec; 336(1):163-72. PubMed ID: 8951048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking radical migration in large hydrogen deficient peptides with covalent labels: facile movement does not equal indiscriminate fragmentation.
    Ly T; Julian RR
    J Am Soc Mass Spectrom; 2009 Jun; 20(6):1148-58. PubMed ID: 19286394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.