These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 19114079)

  • 1. New approach on the development of a mucosal vaccine against strangles: Systemic and mucosal immune responses in a mouse model.
    Florindo HF; Pandit S; Gonçalves LM; Alpar HO; Almeida AJ
    Vaccine; 2009 Feb; 27(8):1230-41. PubMed ID: 19114079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-epsilon-caprolactone-based nanoparticles.
    Florindo HF; Pandit S; Lacerda L; Gonçalves LM; Alpar HO; Almeida AJ
    Biomaterials; 2009 Feb; 30(5):879-91. PubMed ID: 19027152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibody and cytokine-associated immune responses to S. equi antigens entrapped in PLA nanospheres.
    Florindo HF; Pandit S; Gonçalves LM; Videira M; Alpar O; Almeida AJ
    Biomaterials; 2009 Oct; 30(28):5161-9. PubMed ID: 19524290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel mucosal vaccine against strangles by supercritical enhanced atomization spray-drying of Streptococcus equi extracts and evaluation in a mouse model.
    Rodrigues MA; Figueiredo L; Padrela L; Cadete A; Tiago J; Matos HA; Gomes de Azevedo E; Florindo HF; Gonçalves LM; Almeida AJ
    Eur J Pharm Biopharm; 2012 Oct; 82(2):392-400. PubMed ID: 22841882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microencapsulation of Streptococcus equi antigens in biodegradable microspheres and preliminary immunisation studies.
    Azevedo AF; Galhardas J; Cunha A; Cruz P; Gonçalves LM; Almeida AJ
    Eur J Pharm Biopharm; 2006 Oct; 64(2):131-7. PubMed ID: 16846728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibody kinetics and immune profile analysis of a Streptococcus equi DNA vaccine expressing the FljB and SeM fusion protein in murine and equine models.
    Ma X; Wang C; Zhang B; Xia L; Su Y
    Res Vet Sci; 2019 Aug; 125():82-88. PubMed ID: 31174167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streptococcus equi antigens adsorbed onto surface modified poly-epsilon-caprolactone microspheres induce humoral and cellular specific immune responses.
    Florindo HF; Pandit S; Gonçalves LM; Alpar HO; Almeida AJ
    Vaccine; 2008 Aug; 26(33):4168-77. PubMed ID: 18599166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intranasal immunisation of mice against Streptococcus equi using positively charged nanoparticulate carrier systems.
    Figueiredo L; Cadete A; Gonçalves LM; Corvo ML; Almeida AJ
    Vaccine; 2012 Oct; 30(46):6551-8. PubMed ID: 22947139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of mucosal immunisation in protection against Streptococcus equi ('Strangles') infections in horses.
    Wallace FJ; Emery JD; Cripps AW; Husband AJ
    Vet Immunol Immunopathol; 1995 Sep; 48(1-2):139-54. PubMed ID: 8533309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affects of N-terminal variation in the SeM protein of Streptococcus equi on antibody and fibrinogen binding.
    Timoney JF; DeNegri R; Sheoran A; Forster N
    Vaccine; 2010 Feb; 28(6):1522-7. PubMed ID: 20005857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of mucosal and systemic antibody specific for SeMF3 of Streptococcus equi by intranasal vaccination using a sucrose acetate isobutyrate based delivery system.
    Nally JE; Artiushin S; Sheoran AS; Burns PJ; Simon B; Gilley RM; Gibson J; Sullivan S; Timoney JF
    Vaccine; 2000 Oct; 19(4-5):492-7. PubMed ID: 11027813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virulence and antigenicity of the szp-gene deleted Streptococcus equi ssp. zooepidemicus mutant in mice.
    Hong-Jie F; Fu-yu T; Ying M; Cheng-ping L
    Vaccine; 2009 Jan; 27(1):56-61. PubMed ID: 18983882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modified polymeric nanoparticles for immunisation against equine strangles.
    Florindo HF; Pandit S; Gonçalves LM; Alpar HO; Almeida AJ
    Int J Pharm; 2010 May; 390(1):25-31. PubMed ID: 19825402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective effect of vaccination with recombinant proteins from Streptococcus equi subspecies equi in a strangles model in the mouse.
    Flock M; Karlström A; Lannergård J; Guss B; Flock JI
    Vaccine; 2006 May; 24(19):4144-51. PubMed ID: 16580099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLGA (85:15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: A promising alternate to traditional adjuvants.
    Singh D; Somani VK; Aggarwal S; Bhatnagar R
    Mol Immunol; 2015 Dec; 68(2 Pt A):272-9. PubMed ID: 26442664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of chitosan coated poly-(ɛ-caprolactone) nanoparticulate system for effective immunization against influenza.
    Gupta NK; Tomar P; Sharma V; Dixit VK
    Vaccine; 2011 Nov; 29(48):9026-37. PubMed ID: 21939718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prokaryotic expression and immunogenicity of IgG-binding protein of Streptococcus equi subspecies equi].
    Shao J; Jiang H; Chang J; Zhang B; Li S; Su Y
    Sheng Wu Gong Cheng Xue Bao; 2016 May; 32(5):577-583. PubMed ID: 29019196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Streptococcus equi-derived extracellular vesicles as a vaccine candidate against Streptococcus equi infection.
    Lee H; Yun SH; Hyon JY; Lee SY; Yi YS; Choi CW; Jun S; Park EC; Kim SI
    Vet Microbiol; 2021 Aug; 259():109165. PubMed ID: 34225054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mucosal co-immunization of mice with recombinant lactococci secreting VapA antigen and leptin elicits a protective immune response against Rhodococcus equi infection.
    Cauchard S; Bermúdez-Humarán LG; Blugeon S; Laugier C; Langella P; Cauchard J
    Vaccine; 2011 Dec; 30(1):95-102. PubMed ID: 22019740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production.
    Murthy AK; Chambers JP; Meier PA; Zhong G; Arulanandam BP
    Infect Immun; 2007 Feb; 75(2):666-76. PubMed ID: 17118987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.