BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19114653)

  • 1. A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis.
    Ben-Ami O; Pencovich N; Lotem J; Levanon D; Groner Y
    Proc Natl Acad Sci U S A; 2009 Jan; 106(1):238-43. PubMed ID: 19114653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiR144/451 Expression Is Repressed by RUNX1 During Megakaryopoiesis and Disturbed by RUNX1/ETO.
    Kohrs N; Kolodziej S; Kuvardina ON; Herglotz J; Yillah J; Herkt S; Piechatzek A; Salinas Riester G; Lingner T; Wichmann C; Bonig H; Seifried E; Platzbecker U; Medyouf H; Grez M; Lausen J
    PLoS Genet; 2016 Mar; 12(3):e1005946. PubMed ID: 26990877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation.
    Kuvardina ON; Herglotz J; Kolodziej S; Kohrs N; Herkt S; Wojcik B; Oellerich T; Corso J; Behrens K; Kumar A; Hussong H; Urlaub H; Koch J; Serve H; Bonig H; Stocking C; Rieger MA; Lausen J
    Blood; 2015 Jun; 125(23):3570-9. PubMed ID: 25911237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse RUNX1C regulates premegakaryocytic/erythroid output and maintains survival of megakaryocyte progenitors.
    Draper JE; Sroczynska P; Leong HS; Fadlullah MZH; Miller C; Kouskoff V; Lacaud G
    Blood; 2017 Jul; 130(3):271-284. PubMed ID: 28490570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RUNX1 suppression induces megakaryocytic differentiation of UT-7/GM cells.
    Nagai R; Matsuura E; Hoshika Y; Nakata E; Nagura H; Watanabe A; Komatsu N; Okada Y; Doi T
    Biochem Biophys Res Commun; 2006 Jun; 345(1):78-84. PubMed ID: 16674921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models.
    Pencovich N; Jaschek R; Tanay A; Groner Y
    Blood; 2011 Jan; 117(1):e1-14. PubMed ID: 20959602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of RUNX1 by siRNA in megakaryocytic UT-7/GM cells.
    Okada Y; Nagai R; Matsuura E; Hoshika Y; Nakata E; Nagura H; Watanabe A; Komatsu N; Doi T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):261-2. PubMed ID: 17150917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1.
    Feng J; Iwama A; Satake M; Kohu K
    Br J Haematol; 2009 May; 145(3):412-23. PubMed ID: 19298589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation.
    Elagib KE; Racke FK; Mogass M; Khetawat R; Delehanty LL; Goldfarb AN
    Blood; 2003 Jun; 101(11):4333-41. PubMed ID: 12576332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miR-17 deregulates a core RUNX1-miRNA mechanism of CBF acute myeloid leukemia.
    Fischer J; Rossetti S; Datta A; Eng K; Beghini A; Sacchi N
    Mol Cancer; 2015 Jan; 14():7. PubMed ID: 25612891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human
    Li Y; Jin C; Bai H; Gao Y; Sun S; Chen L; Qin L; Liu PP; Cheng L; Wang QF
    Blood; 2018 Jan; 131(2):191-201. PubMed ID: 29101237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression.
    Visvader J; Adams JM
    Blood; 1993 Sep; 82(5):1493-501. PubMed ID: 7689871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells.
    Browne G; Dragon JA; Hong D; Messier TL; Gordon JA; Farina NH; Boyd JR; VanOudenhove JJ; Perez AW; Zaidi SK; Stein JL; Stein GS; Lian JB
    Tumour Biol; 2016 Jul; 37(7):8825-39. PubMed ID: 26749280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minicircuitry of microRNA-9-1 and RUNX1-RUNX1T1 contributes to leukemogenesis in t(8;21) acute myeloid leukemia.
    Fu L; Shi J; Liu A; Zhou L; Jiang M; Fu H; Xu K; Li D; Deng A; Zhang Q; Pang Y; Guo Y; Hu K; Zhou J; Wang Y; Huang W; Jing Y; Dou L; Wang L; Xu K; Ke X; Nervi C; Li Y; Yu L
    Int J Cancer; 2017 Feb; 140(3):653-661. PubMed ID: 27770540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of RUNX1 transcriptional function by GATA-1.
    Elagib KE; Goldfarb AN
    Crit Rev Eukaryot Gene Expr; 2007; 17(4):271-80. PubMed ID: 17725493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MiR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of ZO-1, occludin and claudin-5.
    Miao YS; Zhao YY; Zhao LN; Wang P; Liu YH; Ma J; Xue YX
    Cell Signal; 2015 Jan; 27(1):156-67. PubMed ID: 25452107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and P-TEFb.
    Goldfarb AN
    J Cell Biochem; 2009 Jun; 107(3):377-82. PubMed ID: 19350569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. microRNA-22 promotes megakaryocyte differentiation through repression of its target,
    Weiss CN; Ito K
    Blood Adv; 2019 Jan; 3(1):33-46. PubMed ID: 30617215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of miR-18a on proliferation and apoptosis of gastric cancer cells by regulating RUNX1.
    Qi B; Dong Y; Qiao XL
    Eur Rev Med Pharmacol Sci; 2020 Oct; 24(19):9957-9964. PubMed ID: 33090400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks.
    Trécul A; Morceau F; Gaigneaux A; Schnekenburger M; Dicato M; Diederich M
    Biochem Pharmacol; 2014 Nov; 92(2):299-311. PubMed ID: 25241289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.