These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 19115011)

  • 21. Introducing the Dendrify framework for incorporating dendrites to spiking neural networks.
    Pagkalos M; Chavlis S; Poirazi P
    Nat Commun; 2023 Jan; 14(1):131. PubMed ID: 36627284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CyNEST: a maintainable Cython-based interface for the NEST simulator.
    Zaytsev YV; Morrison A
    Front Neuroinform; 2014; 8():23. PubMed ID: 24672470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brian hears: online auditory processing using vectorization over channels.
    Fontaine B; Goodman DF; Benichoux V; Brette R
    Front Neuroinform; 2011; 5():9. PubMed ID: 21811453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python.
    Hazan H; Saunders DJ; Khan H; Patel D; Sanghavi DT; Siegelmann HT; Kozma R
    Front Neuroinform; 2018; 12():89. PubMed ID: 30631269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limits to high-speed simulations of spiking neural networks using general-purpose computers.
    Zenke F; Gerstner W
    Front Neuroinform; 2014; 8():76. PubMed ID: 25309418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs.
    Golosio B; Tiddia G; De Luca C; Pastorelli E; Simula F; Paolucci PS
    Front Comput Neurosci; 2021; 15():627620. PubMed ID: 33679358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PyRhO: A Multiscale Optogenetics Simulation Platform.
    Evans BD; Jarvis S; Schultz SR; Nikolic K
    Front Neuroinform; 2016; 10():8. PubMed ID: 27148037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.
    Sherfey JS; Soplata AE; Ardid S; Roberts EA; Stanley DA; Pittman-Polletta BR; Kopell NJ
    Front Neuroinform; 2018; 12():10. PubMed ID: 29599715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient simulation environment for modeling large-scale cortical processing.
    Richert M; Nageswaran JM; Dutt N; Krichmar JL
    Front Neuroinform; 2011; 5():19. PubMed ID: 22007166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SNS-Toolbox: An Open Source Tool for Designing Synthetic Nervous Systems and Interfacing Them with Cyber-Physical Systems.
    Nourse WRP; Jackson C; Szczecinski NS; Quinn RD
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simplicity and efficiency of integrate-and-fire neuron models.
    Plesser HE; Diesmann M
    Neural Comput; 2009 Feb; 21(2):353-9. PubMed ID: 19431263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience.
    Vella M; Cannon RC; Crook S; Davison AP; Ganapathy G; Robinson HP; Silver RA; Gleeson P
    Front Neuroinform; 2014; 8():38. PubMed ID: 24795618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatically Selecting a Suitable Integration Scheme for Systems of Differential Equations in Neuron Models.
    Blundell I; Plotnikov D; Eppler JM; Morrison A
    Front Neuroinform; 2018; 12():50. PubMed ID: 30349471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topographica: Building and Analyzing Map-Level Simulations from Python, C/C++, MATLAB, NEST, or NEURON Components.
    Bednar JA
    Front Neuroinform; 2009; 3():8. PubMed ID: 19352443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Python scripting in the nengo simulator.
    Stewart TC; Tripp B; Eliasmith C
    Front Neuroinform; 2009; 3():7. PubMed ID: 19352442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulations of working memory spiking networks driven by short-term plasticity.
    Tiddia G; Golosio B; Fanti V; Paolucci PS
    Front Integr Neurosci; 2022; 16():972055. PubMed ID: 36262372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.