These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 19115092)

  • 1. The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts.
    Carles-Carner M; Saleh LS; Bryant SJ
    Biomed Mater; 2018 May; 13(4):045009. PubMed ID: 29611815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response.
    Liu X; Rahaman MN; Fu Q
    Acta Biomater; 2011 Jan; 7(1):406-16. PubMed ID: 20807594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone and Cartilage Interfaces With Orthopedic Implants: A Literature Review.
    Grzeskowiak RM; Schumacher J; Dhar MS; Harper DP; Mulon PY; Anderson DE
    Front Surg; 2020; 7():601244. PubMed ID: 33409291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Ceramic Scaffold Architectural Parameters on Biological Response.
    Gariboldi MI; Best SM
    Front Bioeng Biotechnol; 2015; 3():151. PubMed ID: 26501056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells.
    Phadke A; Hwang Y; Kim SH; Kim SH; Yamaguchi T; Masuda K; Varghese S
    Eur Cell Mater; 2013 Jan; 25():114-129. PubMed ID: 23329467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures.
    Fu Q; Rahaman MN; Bal BS; Brown RF
    J Mater Sci Mater Med; 2009 May; 20(5):1159-65. PubMed ID: 19115092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization and osteoblastic activity of chitosan/polycaprolactone/in situ hydroxyapatite scaffolds.
    Yao Q; Yang Y; Pu X; Yang L; Hou Z; Dong Y; Zhang Q
    J Biomater Sci Polym Ed; 2012; 23(14):1755-70. PubMed ID: 21943499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering.
    Çetin D; Kahraman AS; Gümüşderelioğlu M
    J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique.
    Fu Q; Rahaman MN; Bal BS; Brown RF; Day DE
    Acta Biomater; 2008 Nov; 4(6):1854-64. PubMed ID: 18519173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    Biomed Mater; 2008 Jun; 3(2):025005. PubMed ID: 18458369
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.