These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19115119)

  • 1. Oxidative-induced membrane damage in diabetes lymphocytes: effects on intracellular Ca(2 +) homeostasis.
    Belia S; Santilli F; Beccafico S; De Feudis L; Morabito C; Davi G; Fanò G; Mariggiò MA
    Free Radic Res; 2009 Feb; 43(2):138-48. PubMed ID: 19115119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review.
    El Haouari M; Rosado JA
    Blood Cells Mol Dis; 2008; 41(1):119-23. PubMed ID: 18387322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-induced formation of reactive oxygen species causes cell death and disruption of calcium homeostasis in trout hepatocytes.
    Manzl C; Enrich J; Ebner H; Dallinger R; Krumschnabel G
    Toxicology; 2004 Mar; 196(1-2):57-64. PubMed ID: 15036756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization.
    Takahashi T; Takahashi E; Igarashi H; Tezuka N; Kurachi H
    Mol Reprod Dev; 2003 Oct; 66(2):143-52. PubMed ID: 12950101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system.
    Nazıroğlu M
    J Recept Signal Transduct Res; 2012 Jun; 32(3):134-41. PubMed ID: 22475023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches.
    Fridlyand LE; Philipson LH
    Ann N Y Acad Sci; 2005 Dec; 1066():136-51. PubMed ID: 16533924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent effects on functional aspects in human satellite cells.
    Beccafico S; Puglielli C; Pietrangelo T; Bellomo R; Fanò G; Fulle S
    Ann N Y Acad Sci; 2007 Apr; 1100():345-52. PubMed ID: 17460197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways.
    Manna P; Sinha M; Sil PC
    Toxicology; 2009 Mar; 257(1-2):53-63. PubMed ID: 19133311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-talk between calcium and reactive oxygen species signaling.
    Yan Y; Wei CL; Zhang WR; Cheng HP; Liu J
    Acta Pharmacol Sin; 2006 Jul; 27(7):821-6. PubMed ID: 16787564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ER and ageing II: calcium homeostasis.
    Puzianowska-Kuznicka M; Kuznicki J
    Ageing Res Rev; 2009 Jul; 8(3):160-72. PubMed ID: 19427411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upstream reactive oxidative species (ROS) signals in exogenous oxidative stress-induced mitochondrial dysfunction.
    Lu M; Gong X
    Cell Biol Int; 2009 Jun; 33(6):658-64. PubMed ID: 19376252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species damaged human serum albumin in patients with type 1 diabetes mellitus: biochemical and immunological studies.
    Rasheed Z; Ali R
    Life Sci; 2006 Nov; 79(24):2320-8. PubMed ID: 16945391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and brain aging: is zinc the link?
    Frazzini V; Rockabrand E; Mocchegiani E; Sensi SL
    Biogerontology; 2006; 7(5-6):307-14. PubMed ID: 17028932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenously generated reactive oxygen species reduce PMCA activity in platelets from patients with non-insulin-dependent diabetes mellitus.
    Jardín I; Redondo PC; Salido GM; Pariente JA; Rosado JA
    Platelets; 2006 Aug; 17(5):283-8. PubMed ID: 16928598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species inhibit polycystin-2 (TRPP2) cation channel activity in term human syncytiotrophoblast.
    Montalbetti N; Cantero MR; Dalghi MG; Cantiello HF
    Placenta; 2008 Jun; 29(6):510-8. PubMed ID: 18417208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach.
    Morabito C; Rovetta F; Bizzarri M; Mazzoleni G; Fanò G; Mariggiò MA
    Free Radic Biol Med; 2010 Feb; 48(4):579-89. PubMed ID: 20005945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology.
    Bailly C; El-Maarouf-Bouteau H; Corbineau F
    C R Biol; 2008 Oct; 331(10):806-14. PubMed ID: 18926495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New aspects of adipogenesis: radicals and oxidative stress.
    Gummersbach C; Hemmrich K; Kröncke KD; Suschek CV; Fehsel K; Pallua N
    Differentiation; 2009 Feb; 77(2):115-20. PubMed ID: 19281770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress: the vulnerable beta-cell.
    Lenzen S
    Biochem Soc Trans; 2008 Jun; 36(Pt 3):343-7. PubMed ID: 18481954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.