These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19115281)

  • 1. Prediction of human cytochrome P450 2B6-substrate interactions using hierarchical support vector regression approach.
    Leong MK; Chen YM; Chen TH
    J Comput Chem; 2009 Sep; 30(12):1899-909. PubMed ID: 19115281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of cytochrome P450 2B6-substrate interactions using pharmacophore ensemble/support vector machine (PhE/SVM) approach.
    Leong MK; Chen TH
    Med Chem; 2008 Jul; 4(4):396-406. PubMed ID: 18673154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of 2-phenyl-2-(1-piperidinyl)propane (ppp), 1,1',1''-phosphinothioylidynetrisaziridine (thioTEPA), clopidogrel, and ticlopidine as selective inactivators of human cytochrome P450 2B6.
    Walsky RL; Obach RS
    Drug Metab Dispos; 2007 Nov; 35(11):2053-9. PubMed ID: 17682072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis.
    Korhonen LE; Turpeinen M; Rahnasto M; Wittekindt C; Poso A; Pelkonen O; Raunio H; Juvonen RO
    Br J Pharmacol; 2007 Apr; 150(7):932-42. PubMed ID: 17325652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three- and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors.
    Ekins S; Bravi G; Binkley S; Gillespie JS; Ring BJ; Wikel JH; Wrighton SA
    Drug Metab Dispos; 2000 Aug; 28(8):994-1002. PubMed ID: 10901712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability.
    Leong MK
    Chem Res Toxicol; 2007 Feb; 20(2):217-26. PubMed ID: 17261034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome P450 networks in chemical space.
    Lee S; Kim D
    Arch Pharm Res; 2010 Sep; 33(9):1361-74. PubMed ID: 20945135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions.
    Obach RS; Walsky RL; Venkatakrishnan K; Gaman EA; Houston JB; Tremaine LM
    J Pharmacol Exp Ther; 2006 Jan; 316(1):336-48. PubMed ID: 16192315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition and induction of human cytochrome P450 enzymes: current status.
    Pelkonen O; Turpeinen M; Hakkola J; Honkakoski P; Hukkanen J; Raunio H
    Arch Toxicol; 2008 Oct; 82(10):667-715. PubMed ID: 18618097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of cytochrome P450 inhibitors with respect to binding free energy and pIC50 using common molecular descriptors.
    Dagliyan O; Kavakli IH; Turkay M
    J Chem Inf Model; 2009 Oct; 49(10):2403-11. PubMed ID: 19777996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of pharmacokinetic drug-drug interactions using human hepatocyte suspension in plasma and cytochrome P450 phenotypic data. II. In vitro-in vivo correlation with ketoconazole.
    Lu C; Hatsis P; Berg C; Lee FW; Balani SK
    Drug Metab Dispos; 2008 Jul; 36(7):1255-60. PubMed ID: 18381489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized proteochemometric model of multiple cytochrome p450 enzymes and their inhibitors.
    Kontijevskis A; Komorowski J; Wikberg JE
    J Chem Inf Model; 2008 Sep; 48(9):1840-50. PubMed ID: 18693719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel model for the prediction of drug-drug interactions in humans based on in vitro cytochrome p450 phenotypic data.
    Lu C; Miwa GT; Prakash SR; Gan LS; Balani SK
    Drug Metab Dispos; 2007 Jan; 35(1):79-85. PubMed ID: 17020957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of selective cytochrome P450 inhibition.
    Halpert JR
    Annu Rev Pharmacol Toxicol; 1995; 35():29-53. PubMed ID: 7598496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Models to Predict Cytochrome P450 2B6 Inhibitors and Substrates.
    Li L; Lu Z; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2023 Aug; 36(8):1332-1344. PubMed ID: 37437120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles.
    Roy P; Yu LJ; Crespi CL; Waxman DJ
    Drug Metab Dispos; 1999 Jun; 27(6):655-66. PubMed ID: 10348794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the human liver microsomal cytochrome P450s involved in the metabolism of N-nitrosodi-n-propylamine.
    Teiber JF; Hollenberg PF
    Carcinogenesis; 2000 Aug; 21(8):1559-66. PubMed ID: 10910959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function analysis of human cytochrome P-450 2B6 using a novel substrate, site-directed mutagenesis, and molecular modeling.
    Domanski TL; Schultz KM; Roussel F; Stevens JC; Halpert JR
    J Pharmacol Exp Ther; 1999 Sep; 290(3):1141-7. PubMed ID: 10454488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity.
    Faucette SR; Hawke RL; Lecluyse EL; Shord SS; Yan B; Laethem RM; Lindley CM
    Drug Metab Dispos; 2000 Oct; 28(10):1222-30. PubMed ID: 10997944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of support vector machines to in silico prediction of cytochrome p450 enzyme substrates and inhibitors.
    Yap CW; Xue Y; Li ZR; Chen YZ
    Curr Top Med Chem; 2006; 6(15):1593-607. PubMed ID: 16918471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.