These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19115321)

  • 41. Correlation of histology and linear and nonlinear microscopy of the living human cornea.
    Masters BR
    J Biophotonics; 2009 Mar; 2(3):127-39. PubMed ID: 19343693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy.
    von Vacano B; Wohlleben W; Motzkus M
    Opt Lett; 2006 Feb; 31(3):413-5. PubMed ID: 16480226
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vibrational coherence of I2 in solid Kr.
    Karavitis M; Apkarian VA
    J Chem Phys; 2004 Jan; 120(1):292-9. PubMed ID: 15267289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Broadband coherent anti-Stokes Raman scattering light generation in BBO crystal by using two crossing femtosecond laser pulses.
    Liu J; Zhang J; Kobayashi T
    Opt Lett; 2008 Jul; 33(13):1494-6. PubMed ID: 18594676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonlinear optical effects in Raman calibrations of a Thomson scattering system.
    Bassan M; Giudicotti L; Pasqualotto R
    Appl Opt; 1993 Sep; 32(27):5313-23. PubMed ID: 20856341
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coherent anti-Stokes Raman spectroscopy utilizing phase mismatched cascaded quadratic optical interactions in nonlinear crystals.
    Petrov GI; Zhi M; Yakovlev VV
    Opt Express; 2013 Dec; 21(26):31960-5. PubMed ID: 24514791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analytical Capabilities of Coherent Anti-Stokes Raman Scattering Microspectroscopy.
    Arora R; Petrov GI; Yakovlev VV
    J Mod Opt; 2008 Nov; 55(19-20):3237-3254. PubMed ID: 19727338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supercontinuum-based three-color three-pulse time-resolved coherent anti-Stokes Raman scattering.
    Zeytunyan A; Crampton KT; Zadoyan R; Apkarian VA
    Opt Express; 2015 Sep; 23(18):24019-28. PubMed ID: 26368493
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. II. Application to acetonitrile.
    Nath S; Urbanek DC; Kern SJ; Berg MA
    J Chem Phys; 2007 Jul; 127(4):044307. PubMed ID: 17672690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resonance enhanced coherent anti-Stokes Raman scattering.
    Hudson B; Hetherington W; Cramer S; Chabay I; Klauminzer GK
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3798-802. PubMed ID: 1069264
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.
    Zeng J; Chen L; Dai Q; Lan S; Tie S
    Nanoscale; 2016 Jan; 8(3):1572-9. PubMed ID: 26690965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament.
    Malevich PN; Maurer R; Kartashov D; Ališauskas S; Lanin AA; Zheltikov AM; Marangoni M; Cerullo G; Baltuška A; Pugžlys A
    Opt Lett; 2015 Jun; 40(11):2469-72. PubMed ID: 26030534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep- to near-ultraviolet Raman frequency conversion pumped by femtosecond pulses in a hollow-core waveguide.
    Shakano T; Zaitsu SI; Imasaka T
    Appl Opt; 2021 Aug; 60(23):6962-6970. PubMed ID: 34613179
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measurement of nitric oxide concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman scattering.
    Kulatilaka WD; Chai N; Naik SV; Laurendeau NM; Lucht RP; Kuehner JP; Roy S; Gord JR
    Opt Lett; 2006 Nov; 31(22):3357-9. PubMed ID: 17072422
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of anti-Stokes Raman processes at phonon-polariton resonance: from Raman oscillation, frequency upconversion to Raman amplification.
    Ding YJ
    Opt Lett; 2015 Mar; 40(5):729-32. PubMed ID: 25723418
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iodine-benzene complex as a candidate for a real-time control of a bimolecular reaction. Spectroscopic studies of the properties of the 1:1 complex isolated in solid krypton.
    Kiviniemi T; Hulkko E; Kiljunen T; Pettersson M
    J Phys Chem A; 2009 Jun; 113(22):6326-33. PubMed ID: 19425545
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coherent anti-Stokes Raman scattering as an effective tool for visualization of single-wall carbon nanotubes.
    Paddubskaya A; Dementjev A; Devižis A; Karpicz R; Maksimenko S; Valušis G
    Opt Express; 2018 Apr; 26(8):10527-10534. PubMed ID: 29715988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantum coherent control for nonlinear spectroscopy and microscopy.
    Silberberg Y
    Annu Rev Phys Chem; 2009; 60():277-92. PubMed ID: 18999997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-shot coherent control of molecular rotation by fs/ns rotational coherent anti-Stokes Raman spectroscopy.
    Hosseinnia A; Raveesh M; Dominguez A; Ruchkina M; Linne M; Bood J
    Opt Express; 2022 Aug; 30(18):32204-32214. PubMed ID: 36242287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The phase-controlled Raman effect.
    Lanin AA; Fedotov IV; Fedotov AB; Sidorov-Biryukov DA; Zheltikov AM
    Sci Rep; 2013; 3():1842. PubMed ID: 23719358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.