BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

703 related articles for article (PubMed ID: 19115812)

  • 21. Molecular dynamics simulations of peptide carboxylate hydration.
    Liang T; Walsh TR
    Phys Chem Chem Phys; 2006 Oct; 8(38):4410-9. PubMed ID: 17001408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of molecular speciation on crystal nucleation in polymorphic systems: the conundrum of gamma glycine and molecular 'self poisoning'.
    Towler CS; Davey RJ; Lancaster RW; Price CJ
    J Am Chem Soc; 2004 Oct; 126(41):13347-53. PubMed ID: 15479091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.
    Mannfors B; Palmo K; Krimm S
    J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations.
    Borisenko KB; Reavy HJ; Zhao Q; Abel EW
    J Biomed Mater Res A; 2008 Sep; 86(4):1113-21. PubMed ID: 18080307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals.
    Yau ST; Petsev DN; Thomas BR; Vekilov PG
    J Mol Biol; 2000 Nov; 303(5):667-78. PubMed ID: 11061967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of phase separation in alcohol/water mixtures using two-body force field and standard molecular dynamics.
    Ferrari ES; Burton RC; Davey RJ; Gavezzotti A
    J Comput Chem; 2006 Aug; 27(11):1211-9. PubMed ID: 16755646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In silico prediction of drug solubility: 4. Will simple potentials suffice?
    Lüder K; Lindfors L; Westergren J; Nordholm S; Persson R; Pedersen M
    J Comput Chem; 2009 Sep; 30(12):1859-71. PubMed ID: 19115279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and dynamical properties of hydrogen fluoride in aqueous solution: an ab initio quantum mechanical charge field molecular dynamics simulation.
    Kritayakornupong C; Vchirawongkwin V; Hofer TS; Rode BM
    J Phys Chem B; 2008 Sep; 112(38):12032-7. PubMed ID: 18729507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution.
    Heinz H; Farmer BL; Pandey RB; Slocik JM; Patnaik SS; Pachter R; Naik RR
    J Am Chem Soc; 2009 Jul; 131(28):9704-14. PubMed ID: 19552440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microsolvation and hydrogen bond interactions in Glycine Dipeptide: molecular dynamics and density functional theory studies.
    Yogeswari B; Kanakaraju R; Boopathi S; Kolandaivel P
    J Mol Graph Model; 2012 May; 35():11-20. PubMed ID: 22481074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrational spectra of alpha-amino acids in the zwitterionic state in aqueous solution and the solid state: DFT calculations and the influence of hydrogen bonding.
    Chowdhry BZ; Dines TJ; Jabeen S; Withnall R
    J Phys Chem A; 2008 Oct; 112(41):10333-47. PubMed ID: 18816033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum chemical and molecular dynamics study of the coordination of Th(IV) in aqueous solvent.
    Réal F; Trumm M; Vallet V; Schimmelpfennig B; Masella M; Flament JP
    J Phys Chem B; 2010 Dec; 114(48):15913-24. PubMed ID: 21070066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peptide aggregation and solvent electrostriction in a simple zwitterionic dipeptide via molecular dynamics simulations.
    Tulip PR; Bates SP
    J Chem Phys; 2009 Jul; 131(1):015103. PubMed ID: 19586124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of the d(CCAACGTTGG)(2) decamer in crystal environment: comparison of atomic point-charge, extra-point, and polarizable force fields.
    Baucom J; Transue T; Fuentes-Cabrera M; Krahn JM; Darden TA; Sagui C
    J Chem Phys; 2004 Oct; 121(14):6998-7008. PubMed ID: 15473761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycine in aqueous solution: solvation shells, interfacial water, and vibrational spectroscopy from ab initio molecular dynamics.
    Sun J; Bousquet D; Forbert H; Marx D
    J Chem Phys; 2010 Sep; 133(11):114508. PubMed ID: 20866146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulations of aqueous solutions of ethanolamines.
    López-Rendón R; Mora MA; Alejandre J; Tuckerman ME
    J Phys Chem B; 2006 Aug; 110(30):14652-8. PubMed ID: 16869568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid-state near-edge X-ray absorption fine structure spectra of glycine in various charge states.
    Zubavichus Y; Shaporenko A; Grunze M; Zharnikov M
    J Phys Chem B; 2006 Feb; 110(7):3420-7. PubMed ID: 16494356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions: implications for understanding its crystallization and polymorphism.
    Huang J; Stringfellow TC; Yu L
    J Am Chem Soc; 2008 Oct; 130(42):13973-80. PubMed ID: 18816054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.