BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19116015)

  • 21. Pyrethroid Carboxylesterase PytH from
    Xu D; Gao Y; Sun B; Ran T; Zeng L; He J; He J; Wang W
    Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32303545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids.
    Zhan H; Huang Y; Lin Z; Bhatt P; Chen S
    Environ Res; 2020 Mar; 182():109138. PubMed ID: 32069744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1.
    Ruan Z; Zhai Y; Song J; Shi Y; Li K; Zhao B; Yan Y
    PLoS One; 2013; 8(10):e77329. PubMed ID: 24155944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters.
    Gao W; Wu K; Chen L; Fan H; Zhao Z; Gao B; Wang H; Wei D
    Microb Cell Fact; 2016 Feb; 15():41. PubMed ID: 26892801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insect detoxifying enzymes: their importance in pesticide synergism and resistance.
    Ishaaya I
    Arch Insect Biochem Physiol; 1993; 22(1-2):263-76. PubMed ID: 8431600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides.
    Bhatt P; Bhatt K; Huang Y; Lin Z; Chen S
    Chemosphere; 2020 Apr; 244():125507. PubMed ID: 31835049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180.
    Kim JT; Kang SG; Woo JH; Lee JH; Jeong BC; Kim SJ
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):820-8. PubMed ID: 17119955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment.
    Knaak JB; Dary CC; Zhang X; Gerlach RW; Tornero-Velez R; Chang DT; Goldsmith R; Blancato JN
    Rev Environ Contam Toxicol; 2012; 219():1-114. PubMed ID: 22610175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autotransporter domain-dependent enzymatic analysis of a novel extremely thermostable carboxylesterase with high biodegradability towards pyrethroid pesticides.
    Cai X; Wang W; Lin L; He D; Huang G; Shen Y; Wei W; Wei D
    Sci Rep; 2017 Jun; 7(1):3461. PubMed ID: 28615636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Cloning, expression and characterization of a novel esterase from marine sediment microbial metagenomic library].
    Xu S; Hu Y; Yuan A; Zhu B
    Wei Sheng Wu Xue Bao; 2010 Jul; 50(7):891-6. PubMed ID: 20815235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S.
    Luo X; Zhang D; Zhou X; Du J; Zhang S; Liu Y
    Sci Rep; 2018 May; 8(1):7384. PubMed ID: 29743662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis.
    Heidari R; Devonshire AL; Campbell BE; Dorrian SJ; Oakeshott JG; Russell RJ
    Insect Biochem Mol Biol; 2005 Jun; 35(6):597-609. PubMed ID: 15857765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a new and thermostable esterase from a metagenomic library.
    Zhu Y; Li J; Cai H; Ni H; Xiao A; Hou L
    Microbiol Res; 2013 Nov; 168(9):589-97. PubMed ID: 23684391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and biochemical diagnosis of esterase-mediated pyrethroid resistance in a Mexican strain of Boophilus microplus (Acari: Ixodidae).
    Guerrero FD; Pruett JH; Li AY
    Exp Appl Acarol; 2002; 28(1-4):257-64. PubMed ID: 14570139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of a low-temperature adapted lipolytic enzyme from uncultivated micro-organism.
    Roh C; Villatte F
    J Appl Microbiol; 2008 Jul; 105(1):116-23. PubMed ID: 18248379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a Novel Alkaline Family VIII Esterase with S-Enantiomer Preference from a Compost Metagenomic Library.
    Lee HW; Jung WK; Kim YH; Ryu BH; Kim TD; Kim J; Kim H
    J Microbiol Biotechnol; 2016 Feb; 26(2):315-25. PubMed ID: 26502736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning, expression and characterization of a lipase encoding gene from human oral metagenome.
    Preeti A; Hemalatha D; Rajendhran J; Mullany P; Gunasekaran P
    Indian J Microbiol; 2014 Sep; 54(3):284-92. PubMed ID: 24891735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review.
    Cycoń M; Piotrowska-Seget Z
    Front Microbiol; 2016; 7():1463. PubMed ID: 27695449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases.
    Ross MK; Borazjani A; Edwards CC; Potter PM
    Biochem Pharmacol; 2006 Feb; 71(5):657-69. PubMed ID: 16387282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library.
    Kim YH; Kwon EJ; Kim SK; Jeong YS; Kim J; Yun HD; Kim H
    Biochem Biophys Res Commun; 2010 Feb; 393(1):45-9. PubMed ID: 20097165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.