These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19116106)

  • 1. [Dynamic analysis of cell signalling: the example of the Saccharomyces cerevisiae osmotic response].
    Hersen P; McClean M; Ramanathan S
    Med Sci (Paris); 2008 Dec; 24(12):1020-2. PubMed ID: 19116106
    [No Abstract]   [Full Text] [Related]  

  • 2. Hog1: 20 years of discovery and impact.
    Brewster JL; Gustin MC
    Sci Signal; 2014 Sep; 7(343):re7. PubMed ID: 25227612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of signaling in a MAP-kinase pathway by an RNA-binding protein.
    Prinz S; Aldridge C; Ramsey SA; Taylor RJ; Galitski T
    PLoS One; 2007 Feb; 2(2):e249. PubMed ID: 17327913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
    Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H
    EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway.
    Serrano R; Martín H; Casamayor A; Ariño J
    J Biol Chem; 2006 Dec; 281(52):39785-95. PubMed ID: 17088254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitogen-activated protein kinases with distinct requirements for Ste5 scaffolding influence signaling specificity in Saccharomyces cerevisiae.
    Flatauer LJ; Zadeh SF; Bardwell L
    Mol Cell Biol; 2005 Mar; 25(5):1793-803. PubMed ID: 15713635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of cell cycle in response to osmostress: lessons from yeast.
    Clotet J; Posas F
    Methods Enzymol; 2007; 428():63-76. PubMed ID: 17875412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of human and fungal MAP kinases in Saccharomyces cerevisiae.
    Alonso-Monge R; Ureña T; Nombela C; Pla J
    Yeast; 2007 Sep; 24(9):715-22. PubMed ID: 17568451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How can yeast cells decide between three activated MAP kinase pathways? A model approach.
    Rensing L; Ruoff P
    J Theor Biol; 2009 Apr; 257(4):578-87. PubMed ID: 19322936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae.
    Zi Z; Liebermeister W; Klipp E
    PLoS One; 2010 Mar; 5(3):e9522. PubMed ID: 20209100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MEK kinase Ssk2p promotes actin cytoskeleton recovery after osmotic stress.
    Yuzyuk T; Foehr M; Amberg DC
    Mol Biol Cell; 2002 Aug; 13(8):2869-80. PubMed ID: 12181352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast osmoregulation.
    Hohmann S; Krantz M; Nordlander B
    Methods Enzymol; 2007; 428():29-45. PubMed ID: 17875410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems biology analysis of G protein and MAP kinase signaling in yeast.
    Hao N; Behar M; Elston TC; Dohlman HG
    Oncogene; 2007 May; 26(22):3254-66. PubMed ID: 17496920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperosmotic induction of mitogen-activated protein kinase scaffolding.
    Hilder TL; Malone MH; Johnson GL
    Methods Enzymol; 2007; 428():297-312. PubMed ID: 17875425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway.
    Brewster JL; Gustin MC
    Yeast; 1994 Apr; 10(4):425-39. PubMed ID: 7941729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction.
    Proft M; Struhl K
    Cell; 2004 Aug; 118(3):351-61. PubMed ID: 15294160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel Ser/Thr protein phosphatase Ppq1 as a negative regulator of mating MAP kinase pathway in Saccharomyces cerevisiae.
    Shim E; Park SH
    Biochem Biophys Res Commun; 2014 Jan; 443(1):252-8. PubMed ID: 24309106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.
    Parmar JH; Bhartiya S; Venkatesh KV
    Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carnitine uptake by AGP2 in yeast Saccharomyces cerevisiae is dependent on Hog1 MAP kinase pathway.
    Lee J; Lee B; Shin D; Kwak SS; Bahk JD; Lim CO; Yun DJ
    Mol Cells; 2002 Jun; 13(3):407-12. PubMed ID: 12132580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the yeast glycogen phosphorylase gene is regulated by stress-response elements and by the HOG MAP kinase pathway.
    Sunnarborg SW; Miller SP; Unnikrishnan I; LaPorte DC
    Yeast; 2001 Dec; 18(16):1505-14. PubMed ID: 11748727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.